论文主要要点记录《BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation》

摘要:

  1. 为了获取语义信息而丢失了底层细节信息,提出细节获取和语义信息分开获取。
  2. 较浅的网络层获取细节信息,较深的网络层获取语义信息
  3. 融合层融合特征表示
  4. 提出助推器训练策略booster training

介绍

1. 现在的语义分割主要采用两种策略:

  • 基于空洞卷积的,并且摈弃下采样操作:具有较大的计算量和内存占用
  • 基于编码器解码器结构,采用自顶向下和横向连接,恢复高分辨率特征图,这些跳连接对于内存的访问成本较高

2. 语义分支可以通过快速的下采样策略以及较少的通道变得轻量级,基于深度卷积,增强接收域捕获丰富的上下文信息

3. 使用带有一系列辅助预测头的增强训练策略增强推理性能,在推理阶段不会被使用

相关背景

  1. 传统的分割方法基于阈值选择(Otsu,1979)、区域增长(Vincent and Soille,1991)、超像素(Ren and Malik,2003;Achanta et al.,2012;Van den Bergh et al.,2012)和图(Boykov and Jolly,2001;Rother et al.,2004)算法,采用手工制作的特征来解决这一问题。最近,基于FCN的新一代算法(Long et al.,2015;Shelhamer等人,2017)在不同的基准上不断提高最先进的性能。各种方法都是基于两种类型的骨干网:(1)扩张骨干网;(2) encoder-decoder骨干网络。
  2. 一方面,扩张主干去除下采样操作,上采样卷积滤波器以保持高分辨率的特征表示。由于扩张卷积的简单性,各种方法(Chen et al.,2015,2018;Zhao et al.,2017;Wang et al.,2018
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值