多传感器融合SLAM --- 5.Lego-LOAM论文解读及运行

本文详细介绍了LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping)算法,这是一种针对地面车辆在多变地形下的实时六自由度定位和建图方法。与传统的LOAM相比,LeGO-LOAM通过地面点分类、简单的点云聚类和两步优化方法提高了实时性和准确性。论文解读涵盖了摘要、INTRODUCTION部分,重点讨论了如何利用地平面进行优化,包括点云分割、特征提取、两步优化以及回环检测和位姿图优化,以消除定位误差。此外,还介绍了算法的实现和代码编译过程以及运行与可视化分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 Lego LOAM框架简介

2 论文解读

2.1 摘要部分

2.2 INTRODUCTION部分

2.3 系统描述

2.4 Gegmetation

2.5  Lidar Odometry

2.6 Lidara Mapping

3.Lego-LOAM代码编译

4 跑Lego-LOAM及可视化分析


1 Lego LOAM框架简介

        草地里进行行驶,可能把草提取成了边缘点,效果不好。

        LeGO-LOAM是Tixiao Shan提出的⼀种基于LOAM的改进版本,其主要是为了实现小车在多变地形下的定位和建图,其针对前端和后端都做了⼀系列的改进,具体来说:

        前端:

        1. 对地面点进行分类和提取,避免一些边缘点的提取

        2. 应⽤了⼀个简单的点云聚类算法,剔除了⼀些可能的outlier

        3. 两步迭代求解前端帧间里程记,不影响精度的情况下减轻计算负载,保障了嵌⼊式平台的实时性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值