
时间序列模型
文章平均质量分 90
写代码的M教授
愿有前程可奔赴,亦有岁月共回首。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
用Python实现时间序列模型实战——Day 30: 学习总结与未来规划
时间序列数据的基本特征时间序列定义:按时间顺序排列的观察数据,通常具有趋势性、季节性、周期性和随机波动性。平稳性:平稳时间序列的统计特性(如均值、方差)不随时间变化。通过差分、去趋势、去季节性等操作可以将非平稳时间序列转换为平稳时间序列。基本术语:趋势、季节性、周期性、随机性。原创 2024-09-22 07:30:00 · 474 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 28-29: 项目报告与展示
在项目展示中,通过图表、代码片段和分析结果的呈现,我们可以清晰传达项目的流程和预测效果。使用不同模型的对比和评估可以帮助我们选择最合适的模型进行时间序列预测。原创 2024-09-21 07:30:00 · 893 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 26-27: 时间序列分析项目实战
通过本项目,我们展示了如何使用yfinance获取股票市场数据,并应用多种时间序列模型(ARIMA、SARIMA、LSTM)进行建模与预测。每个模型有其优势和适用场景,在金融领域的应用中可以根据具体数据选择合适的模型。原创 2024-09-20 08:00:00 · 831 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 25: 时间序列模型的实际应用
通过本次案例,我们展示了如何在金融领域应用 ARIMA 模型进行时间序列预测。金融市场的时间序列分析具有挑战性,但通过时间序列模型,可以有效地捕捉价格中的趋势和波动,为投资决策提供支持。原创 2024-09-19 08:00:00 · 1570 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 24: 时间序列中的贝叶斯方法
本次案例中,我们使用Pyro和PyTorch构建了贝叶斯时间序列模型,通过贝叶斯推断进行了 LSTM 参数的学习与优化。通过此方法,我们能够为时间序列任务提供具有不确定性估计的预测结果。原创 2024-09-18 08:00:00 · 1727 阅读 · 1 评论 -
用Python实现时间序列模型实战——Day 23: LSTM 与 RNN 模型的深入学习
通过本次案例,我们深入了解了 LSTM 和 RNN 模型的高级优化技巧。双向 LSTM 模型通过从过去和未来两个方向同时进行学习,增强了模型的全局感知能力,而堆叠 LSTM 模型则通过多层堆叠提升了模型的复杂性和表达能力。实际预测效果根据数据和任务的不同可能有所变化。原创 2024-09-17 08:00:00 · 1589 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 22: LSTM 与 RNN 模型
通过本次案例,我们学习了如何构建 LSTM 和 RNN 模型进行时间序列预测。LSTM 由于其记忆门机制,能够较好地捕捉长序列中的模式,而传统的 RNN 在处理长序列时容易出现梯度消失问题。通过调节超参数(如隐藏层神经元数量、学习率等),可以进一步优化模型的预测性能。原创 2024-09-16 16:20:37 · 2316 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 21: 时间序列中的机器学习方法
通过本次案例,我们学习了如何使用机器学习模型对时间序列数据进行建模与预测,包括随机森林、支持向量机和 LSTM 模型。通过比较它们与传统时间序列模型的预测效果,可以看出在处理复杂、非线性时间序列数据时,机器学习方法具有较好的表现。原创 2024-09-15 08:00:00 · 1881 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 20: 时间序列预测的综合练习
通过本次案例,我们综合应用了时间序列分析与预测的多种方法,完成了从数据预处理、模型选择、预测到评估的完整项目流程。我们通过 SARIMA 和 Holt-Winters 模型对航空乘客数据进行了预测,并比较了两个模型的性能。原创 2024-09-14 08:00:00 · 1305 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 19: 时间序列中的异常检测与处理
通过不同的方法,我们可以有效检测时间序列中的异常值,并通过多种插值技术处理缺失数据。基于异常检测结果,我们可以决定是删除异常点还是进行插值处理。缺失值的处理方式应根据具体业务场景选择,线性插值通常能提供更平滑的补全结果,而前向填充适用于快速波动的数据。原创 2024-09-13 08:00:00 · 2570 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 18: 时间序列中的季节性与周期性预测
通过 SARIMA 和 Holt-Winters 模型,我们能够对带有季节性和周期性特征的时间序列数据进行长期预测。季节性分解帮助我们理解数据的组成部分,而基于周期性模式的模型能够提供准确的预测结果。原创 2024-09-12 08:00:00 · 1872 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 17: 时间序列模型的评估方法
通过本次案例学习,我们详细了解了时间序列模型的评估方法,尤其是通过 MAE、MSE 和 RMSE 来衡量模型的预测误差。此外,滚动窗口交叉验证方法在时间序列数据中的应用,可以帮助我们更好地评估模型在不同时间点上的稳定性和预测能力。y_in。原创 2024-09-11 08:00:00 · 1482 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 16: 时间序列预测方法
通过使用一步预测、多步预测和滚动预测方法,我们可以为不同场景下的时间序列数据生成合理的预测结果。结合置信区间,我们可以评估预测值的准确性和不确定性。z%5Csigma。原创 2024-09-10 08:00:00 · 2501 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 15: 时间序列模型的选择与组合
在本案例中,我们通过 AIC 值选择了最佳的模型,并通过加权组合预测方法,结合了 ARIMA、SARIMA 和 Holt-Winters 模型的预测结果。组合预测能够减轻单一模型可能带来的偏差,通常能提高预测准确性。%202kLkn。原创 2024-09-09 14:17:58 · 1583 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)
通过 VAR 和 VECM 模型,可以分析多元时间序列中的相互依赖关系。VAR 模型适合用于平稳时间序列,而 VECM 模型则适用于具有协整关系的非平稳时间序列。原创 2024-09-08 07:30:00 · 4662 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 13: 自回归条件异方差模型 (ARCH/GARCH)
通过使用 ARCH 和 GARCH 模型,我们能够对金融时间序列的波动性进行有效建模和预测。GARCH 模型的优点在于它能够同时捕捉短期和长期的波动性变化,因此广泛用于金融领域的风险管理和资产定价。原创 2024-09-07 08:00:00 · 2095 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 12: 状态空间模型
该模型通过显式地建模时间序列中的潜在状态(即隐藏变量),能够捕捉复杂的动态结构,适用于诸如动态系统、金融市场预测、信号处理等场景。通过这次学习,您掌握了状态空间模型的基本概念及其在时间序列分析中的应用。状态空间模型强大且灵活,适合处理各种复杂的时间序列问题。是一种递归算法,用于估计状态空间模型中的隐藏状态。它通过更新当前的状态估计,结合新的观测数据,生成最优估计。状态空间模型及卡尔曼滤波特别适用于处理噪声较大的系统,并能有效地进行平滑和预测。库中的状态空间模型来构建并分析一个简单的时间序列数据。原创 2024-09-06 08:00:00 · 2247 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 11: 指数平滑模型
简单指数平滑 (SES)适用场景:适用于没有趋势和季节性波动的平稳时间序列。优点:简单易用,计算量小。缺点:无法处理具有趋势或季节性的序列。霍尔特线性趋势模型适用场景:适用于具有线性趋势但没有季节性的时间序列。优点:能够捕捉线性趋势,适合趋势明显的数据。缺点:无法处理季节性波动。霍尔特-温特斯季节性模型适用场景:适用于具有季节性和趋势的时间序列。优点:能够同时捕捉趋势和季节性波动,是最为灵活的指数平滑模型。缺点:计算量相对较大,模型较复杂。原创 2024-09-05 08:30:00 · 3765 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 10: ARIMA 与 SARIMA 模型的综合练习
ARIMA(2, 1, 2) 模型的摘要信息包括模型参数的估计值、标准误差、t 统计量等。AIC 和 BIC 值用于评估模型的优劣。原创 2024-09-04 08:30:00 · 1501 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 9: SARIMA 模型的诊断与调整
模型摘要中显示了各参数的估计值、标准误差、t 统计量等信息,以及 AIC/BIC 信息准则,用于评估模型的拟合效果。原创 2024-09-03 08:30:00 · 1713 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 8: 季节性ARIMA模型 (SARIMA)
SARIMA 模型SARIMA 模型是扩展了 ARIMA 模型的一种方法,全称为季节性自回归积分滑动平均模型(Seasonal AutoRegressive Integrated Moving Average)。它结合了 ARIMA 模型的非季节性部分和季节性成分,用于处理具有季节性模式的时间序列数据。SARIMA 模型可以表示为是时间的观察值。是非季节性自回归多项式,阶数为。是季节性自回归多项式,阶数为。是非季节性移动平均多项式,阶数为。是季节性移动平均多项式,阶数为。原创 2024-09-02 13:22:42 · 6403 阅读 · 2 评论 -
用Python实现时间序列模型实战——Day 7: ARIMA 模型的诊断与调整
模型摘要中显示了各参数的估计值、标准误差、t 统计量等信息,以及 AIC、BIC 等信息准则,用于评估模型的拟合效果。原创 2024-09-01 15:30:30 · 3187 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 6: ARIMA 模型的理论基础
ARIMA 模型ARIMA 模型全称为自回归积分滑动平均模型 (AutoRegressive Integrated Moving Average),用于分析和预测单变量时间序列数据。ARIMA 模型结合了自回归 (AR) 模型、差分 (I) 和移动平均 (MA) 模型的特点,能够处理非平稳时间序列。ARIMA 模型的公式ppp 表示自回归 (AR) 项的阶数。ddd 表示差分 (I) 的次数,用于将非平稳序列转换为平稳序列。qqq 表示移动平均 (MA) 项的阶数。原创 2024-08-31 08:30:00 · 2051 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 4: 时间序列分解
通过这些分解方法,我们能够深入理解时间序列的组成部分,为后续的建模和预测奠定基础。根据时间序列的特点,可以选择适合的分解方法来进行分析。对于波动幅度较为稳定的时间序列,加性模型可能更为适合;而对于波动幅度随趋势变化的数据,乘性模型或 STL 分解可能更合适。STL 方法使用 LOESS(局部加权回归)来估计趋势和季节性成分,从而提供更灵活的分解方式。原创 2024-08-29 08:30:00 · 2586 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 5: 平稳时间序列模型的介绍
库对时间序列数据进行 AR、MA 和 ARMA 模型的拟合,并比较各模型的拟合效果。表示使用 AR(2) 模型。输出模型的摘要信息。函数拟合自回归模型 (AR),设置。原创 2024-08-30 08:30:00 · 3653 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 3: 时间序列数据预处理
通过这些预处理步骤,我们能够将原始的非平稳时间序列转化为平稳序列,从而为后续的时间序列建模(如 ARIMA 模型)奠定基础。差分后的数据不再表现出明显的趋势,变得更加平稳,适合进一步的时间序列建模。:使用 12 个月的窗口计算的 SMA 平滑了数据,使得趋势更加明显,同时保留了数据中的季节性成分。差分运算是时间序列平稳化的一种方法,通过计算相邻时间点的差值来消除序列中的趋势和季节性成分。:差分后的序列消除了线性趋势,数据围绕零上下波动,说明差分操作有效地去除了趋势成分。原创 2024-08-28 08:45:00 · 2151 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day 2: 时间序列的基本统计量
通过这些分析和可视化,我们对时间序列的基本统计量有了深入的理解,这为后续的时间序列建模和预测打下了基础。在未来的学习中,我们将利用这些统计工具来构建和评估更复杂的时间序列模型。库对时间序列数据进行 ACF 和 PACF 的计算及可视化,并进行平稳性检验。原创 2024-08-27 08:45:00 · 2191 阅读 · 0 评论 -
用Python实现时间序列模型实战——Day1:时间序列的基本概念
时间序列数据是一组按时间顺序排列的观测值。时间序列的每个观测值都与特定时间点相关联。例如,气温每天的记录、股票每日的收盘价等。特点时间依赖性:时间序列数据的一个基本特点是当前数据点可能依赖于之前的一个或多个数据点。这种依赖性可以用来进行预测。趋势:数据可能表现出随时间的长期上升或下降趋势。例如,随着经济发展,GDP 一般会显示上升趋势。季节性:数据在特定时间周期内反复出现的模式。季节性常见于许多现实世界的数据中,如每年的某些月份销售额上升。周期性。原创 2024-08-26 20:11:14 · 1720 阅读 · 0 评论 -
用Python实现时间序列模型实战——00.学习内容及计划
理解时间序列数据的基本概念和特性。掌握常用的时间序列分析方法和模型,包括移动平均模型 (MA)、自回归模型 (AR)、自回归滑动平均模型 (ARMA)、自回归积分滑动平均模型 (ARIMA)、季节性自回归积分滑动平均模型 (SARIMA)、指数平滑法、状态空间模型等。学习如何进行时间序列的模型评估和预测。实践时间序列分析和预测的典型案例。原创 2024-08-26 19:41:54 · 1463 阅读 · 0 评论