最近在做一个文本数据分类的项目,但是遇到了数据不平衡的问题,即某些分类标签对应的文本数据太少了,这种情况如何解决呢?——数据增强
1. 什么是数据增强?
数据增强是指通过对原始数据进行一系列变换或处理,生成具有一定差异性但又保持其标签不变的新数据集的过程。这个过程旨在增加数据样本的多样性,从而改善模型的泛化能力和鲁棒性。
2. 常见的数据增强技术?
- 图像数据增强:包括随机旋转、缩放、裁剪、翻转、平移、改变亮度、对比度、添加噪声等操作。
- 文本数据增强:包括随机插入、删除、替换字符、改变词序、同义词替换等操作。
- 时间序列数据增强:包括随机平移、缩放、添加噪声、截断、填充等操作。
3. 如何使用AI进行文本数据增强?
要实现AI进行文本数据增强需要的准备:
- 包括数据和数据标签的数据集
- 抽取出文本数据量少对应的分类标签及其文本数据
- AI数据增强工程代码准备
3.1 案例分析
本次项目的数据集中共有35000条文本数据,每条文本数据都有标签,共600个标签。数据量最多的文本标签有432个,数据量最少的文本标签只有1个,有200个标签的文本数据量少于20条。
显然,无法直接开始模型训练,数据不平衡可能导致模型在少数类别上表现不佳。于是本项目对于数据量少的文本标签要进行数据增强,本项目是对文本数据量少于20的文本标签进行数据增强,以保证每个文本标签对应的数据量都大于等于20条。
比如:“请问哪一项最能描述您的工作环境和情