RISC-V V向量指令集学习笔记——访存指令

本文详细介绍了向量指令集在处理人工智能领域大规模矩阵和向量运算中的重要性,对比了SIMD(单指令多数据)指令与RV-V向量指令的差异。内容涵盖SIMD的执行原理、向量寄存器的配置、寻址方式以及向量指令相关的CSR寄存器。此外,还讨论了不同寻址模式,如单元步幅、恒定步幅和索引寻址在向量运算中的应用。最后,提到了向量指令在内存访问和向量长度控制方面的细节,强调了其在提高计算效率方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

为什么需要向量(矢量)指令集?

一般的处理器都是单指令单数据(SISD),处理数据能力有限。在面向人工智能领域,需要进行大量的矩阵运算、向量运算,已经难以满足计算需求,因此需要提高指令处理效率,一条指令处理多个数据,即SIMD。

SIMD指令和RV扩展的向量指令的区别?

SIMD指令中向量为固定长度,RV-V中的向量长度可由CSR某些位设置,更灵活;

寄存器大小可以设置,固定的寄存器文件空间可由用户自己切割

CPU中SIMD的向量运算如何执行?

图中,v1/v2/v3表示不同的向量寄存器,可以看到,一个向量寄存器可以存放多个元素,同时进入多个ALU中进行运算。

一、概念

VLEN:向量寄存器位宽

ELEN:单个向量元素最大位宽

SEW:一个选定元素位宽

EEW:指令实际操作的有效元素位宽 一般情况SEW=EEW 或EEW=nSEW

LMUL:一个寄存器组中寄存器的个数(要求寄存器中每个元素位宽为SEW,可取分数值,LMUL=1/2,1/4,1/8,1,2,4,8等)

EMUL: 寄存器中元素位宽为EEW时寄存器组中寄存器个数 其中,LMUL/SEW=EMUL/EEW

SEWLMUL1min:LMUL=1时SEW能取得最小值

SEWLMUL1max: LMUL =1时SEW能取到得最大值 一般=VLEN

VLMAX:一条向量指令可以操作的元素最大个数 VLMAX=LMUL×(VLEN/SEW)

field: 由EMUL个寄存器组成的寄存器组

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值