计算机视觉入门学习笔记(二)——图像预处理

原视频教程:
https://www.bilibili.com/video/BV19x411X7k6?from=search&seid=9816644268076164289

一、图像显示与储存原理

1.1、图像怎么显示

计算机视觉中,主要有RGB颜色空间HSV颜色空间
RGB:三个颜色通道(RGB),有时候有四个(ARGB)
HSV:三个通道(HSV),色调、饱和度、亮度

1.2、图像怎么储存

在这里插入图片描述

二、图像增强的目标

改善视觉效果,转为更适合人或者机器分析,突出有意义的东西,抑制无用信息
空间域处理:点运算【直方图】,形态学运算【膨胀,腐蚀】,临域运算【卷积,金字塔】
频率域处理:傅里叶变换,小波变换

三、点运算:基于直方图的对比度增强

3.1 直方图是什么

将某一张照片的像素灰度[0,255]全部找出来,并按照个数统计其分布,得到的统计曲线就是直方图,如下图在这里插入图片描述

3.2 直方图均衡化(经典方法)

如3.1图,可以看出此时灰度分布不均匀,图像集中在了较暗的地方。这种情况大多数是因为相机的的成像、曝光等等有问题,可以通过直方图均衡化来调整。对直方图进行非线性拉伸,使得其大致均匀分布。注意通常为非线性拉伸。
在这里插入图片描述

3.3 自适应直方图均衡化(AHE)

简单地非线性拉伸直方图成为直方图均衡化的经典算法,想象一下,当图像中存在过亮的情况,比如正对着光源拍摄,这种情况使用经典算法,会导致亮的部分更亮,因此经典算法作用有限,可以使用自适应直方图均衡化。分为以下几步:
1、设定一个模板,在原始图片上滑动,步长固定;
2、在滑动的时候,对模板覆盖住的区域进行直方图均衡的经典算法,并对每个像素点进行结果赋值;
3、滑动结束后 ,每个像素点会有多个赋值,取多个赋值的均值为最终的结果,这个结果成为即为AHE得到的映射函数。

3.4 限制对比度自适应直方图均衡(CLAHE) 没搞懂
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值