POJ 2828 Buy Tickets 的两种写法
题解
题意
插队的问题,每个案例给出 n ,代表有 n 个插队的,每个给出 p, v,意思是代号为 v 的人插在了第 p 个人的后面,问最后的队伍的排列。 一开始的队列是空的,如果输入i,j:代表代号为 j 的人插在代号为 i 的人的后面,也就是说他前面一定有了 i 个人,而他是第 i + 1 个人。
思路
反着考虑,从最后一个人往前放进队列,可以保证每次放的最后一个人的位置是固定不变的。用树状数组或线段树维护区间的空闲位置,j排在第i个人后面,可以确定j前面一定有i个人,所以j一定放置在i+1. 只要找到i+1的下标就行。
代码
树状数组上二分
代码实现思路就是每个位置需要初始化成1,然后如果j排在i之后,就去树状数组上二分找到前面有i个空位的位置,这个位置就是j的地方。然后使用ans标记答案,同时把当前位置的空位-1。
#include <iostream>
#include <cstring>
using namespace std;
const int N = 2e5 + 10;
// 树状数组二分写法
int n;
int c[N], ans[N], tar[N], now[N];
void modify(int x, int d)
{
for(;x<=n;x+=x&(-x)) c[x] += d;
}
int query(int x)
{
int pos = 0, t = 0;
// 就是二分的过程
// 先从高位开始取,如果当前这一位可以取,那么就考虑下一位是取1还是0
// 到最后找到的就是<=x并且下标最大的那个pos
for (int j = 18; j >= 0; j--)
{
if (pos + (1 << j) <= n && t + c[pos + (1 << j)] <= x)
{
pos += (1 << j);
t += c[pos];
}
}
return pos;
}
int main()
{
while (scanf("%d", &n) != EOF)
{
for(int i = 1; i <= n; i ++) modify(i, 1);
for (int i = 1; i <= n; i++)
scanf("%d%d", &tar[i], &now[i]);
for (int i = n; i >= 1; i--)
{
int pos = query(tar[i]);
pos += 1; // +1找到的才是i+1的位置
ans[pos] = now[i];
modify(pos, -1);
}
for (int i = 1; i <= n; i++)
printf("%d ", ans[i]);
printf("\n");
}
}
线段树维护区间和
#include <iostream>
using namespace std;
const int N = 2e5 + 10;
int n, ans[N], tar[N], now[N];
struct Node
{
int sum;
} seg[N * 4];
void pushup(int id)
{
seg[id].sum = seg[id * 2].sum + seg[id * 2 + 1].sum;
}
void build(int id, int l, int r)
{
if (l == r)
{
seg[id].sum = 1;
return;
}
int mid = l + r >> 1;
build(id * 2, l, mid);
build(id * 2 + 1, mid + 1, r);
pushup(id);
}
// 单点修改
void change(int id, int l, int r, int pos, int val)
{
if (l == r)
{
seg[id].sum--;
ans[l] = val;
return;
}
int mid = l + r >> 1;
// 这个查找其实也相当于二分的过程
if (seg[id * 2].sum >= pos)
{
change(id * 2, l, mid, pos, val);
}
else
{
change(id * 2 + 1, mid + 1, r, pos - seg[id * 2].sum, val);
}
pushup(id);
}
int main()
{
while (scanf("%d", &n) != EOF)
{
for (int i = 1; i <= n; i++)
{
scanf("%d%d", &tar[i], &now[i]);
tar[i]++;
}
build(1, 1, n);
for (int i = n; i >= 1; i--)
{
change(1, 1, n, tar[i], now[i]);
}
for (int i = 1; i <= n; i++)
{
printf("%d ", ans[i]);
}
printf("\n");
}
}