剑指 Offer II 084. 含有重复元素集合的全排列

给定一个可能含有重复元素的整数数组,通过回溯算法来寻找并返回所有不重复的全排列。在回溯过程中,需要避免重复选择相同的元素,通过对已选状态进行判断来实现。

https://leetcode.cn/problems/7p8L0Z/

题目要求

给定一个可包含重复数字的整数集合 nums ,按任意顺序 返回它所有不重复的全排列。

方法:回溯

  • 添加之前判断是否已经存在,如果不存在则添加
    public List<List<Integer>> permuteUnique(int[] nums) {
        List<List<Integer>> res = new ArrayList<>();
        int n = nums.length;
        backtrack(0, n, nums, res);
        return res;
    }

    public void backtrack(int i, int n, int[] nums, List<List<Integer>> res) {
        if (i == n) {
            List<Integer> cur = new ArrayList<>();
            for (int num : nums) cur.add(num);
            if (!res.contains(cur)) res.add(cur);
        }
        for (int j = i; j < n; j++) {
            // 交换
            swap(nums, i, j);
            backtrack(i + 1, n, nums, res);
            // 回溯,再交换回来
            swap(nums, i, j);
        }
    }

    public void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

方法

  • (i > 0 && nums[i] == nums[i-1] && vis[i-1])
    • i>0防止越界,nums[i] == nums[i-1]代表排序后的数字是重复的,因为我们首先经过了排序,所以当满足条件时,i 位置对应的元素必然是重复的元素。比如在[1,1,2,2,3]里,1 和 2 都是重复的元素。对于重复的元素,我们在某一个位置选择该位置需要填入的数字时,应当只选择一次,所以nums[i] == nums[i-1] 时,我们在 i - 1已经选取过一次了,不应该继续选择,而是continue。但为什么又有vis[i-1]这个条件呢?以[1,1,1]为例,只有一种排列,如果没有这个条件,答案就为[]。这是因为,我们应当continue的情况是:该元素在该位置未被使用过。即,就算第i位元素为重复的数字,但他的i-1位已经在前面某一次选择中被使用过了,那他仍然可以在这一位作为备选项。
class Solution {
    public List<List<Integer>> permuteUnique(int[] nums) {  /* main */
        List<List<Integer>> res = new ArrayList<>();
        List<Integer> cur = new ArrayList<>();
        Arrays.sort(nums);
        int n = nums.length;
        boolean[] visited = new boolean[n];
        backtrack(nums, visited, n, cur, res);
        return res;
    }

    private void backtrack(int[] nums, boolean[] visited, int n, List<Integer> cur, List<List<Integer>> res) {
        if (cur.size() == n) {
            res.add(new ArrayList<>(cur));
            return;
        }
        for (int i = 0; i < n; ++i) {
            if (visited[i] || i != 0 && nums[i] == nums[i - 1] && !visited[i - 1])
                continue;
            cur.add(nums[i]);
            visited[i] = true;
            backtrack(nums, visited, n, cur, res);
            cur.remove(cur.size() - 1);
            visited[i] = false;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值