《美团机器学习实践》读后感和一点思考

本文是《美团机器学习实践》的读后感,重点探讨了CPU推理服务优化,包括系统级、应用级和算法级的优化方法。在CPU上,通过数学库和推理SDK优化提高性能,并分析了影响性能的因素,如OpenMP参数、CPU核数、输入数据格式、NUMA配置等。此外,还介绍了应用级优化,如并发设计和预处理优化,以及算法级优化,如批大小调整、模型剪枝和量化。最后讨论了融合优化和引擎优化策略,如多模型、多context和多stream、动态形状以及CUDA Graph的应用,以提升服务性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:最近拜读了美团算法团队出品的《美团机器学习实践》,这本书写于2018年,一个大模型还没有标配的时代。这本书侧重于工业界的实践,能清楚地让我们了解到工业界和学术界对机器学习的关注方向上的差异,值得一读。因为我是重点做模型工程/模型部署方向的,所以重点关注这个方面,汲取美团技术团队的经验。

目录

机器学习的通用流程

1、问题建模

2、特征工程

3、模型选择

4、模型融合

数据去噪

特征工程

CPU推理服务优化

系统级优化

系统级优化使用中有哪些影响性能的因素?

如何进行应用级的优化?

如何进行算法级的优化?

Batchsize 的选取在 CPU 上对服务性能的影响是怎样的?

融合优化

引擎优化

Pipeline

参考


机器学习的通用流程

1、问题建模

将问题抽象成机器学习可预测的问题,这个过程中要有明确的业务指标和模型预测目标,根据目标选择适当的评估指标用于模型评估。

2、特征工程

对数据集进行特征抽取。成功的机器学习算法必然在特征工程方面做的非常好。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值