前言:最近拜读了美团算法团队出品的《美团机器学习实践》,这本书写于2018年,一个大模型还没有标配的时代。这本书侧重于工业界的实践,能清楚地让我们了解到工业界和学术界对机器学习的关注方向上的差异,值得一读。因为我是重点做模型工程/模型部署方向的,所以重点关注这个方面,汲取美团技术团队的经验。
目录
Batchsize 的选取在 CPU 上对服务性能的影响是怎样的?
机器学习的通用流程
1、问题建模
将问题抽象成机器学习可预测的问题,这个过程中要有明确的业务指标和模型预测目标,根据目标选择适当的评估指标用于模型评估。
2、特征工程
对数据集进行特征抽取。成功的机器学习算法必然在特征工程方面做的非常好。