前言:diffusion models是现在人工智能领域最火的方向之一,并引爆了AIGC方向,一大批创业公司随之诞生。笔者2021年6月开始研究diffusion,见证了扩散模型从无人问津到炙手可热的过程,这些篇经典论文我的专栏里都详细介绍过原理、复现过代码。这篇博客以时间发展顺序,串讲一下从入门到精(放)通(弃)的10篇必读的经典论文。
目录
1、DDPM奠基之作:《Denoising Diffusion Probabilistic Models》
2、从DDPM到DDIM:《Denoising Diffusion Implicit Models》
3、第一波高潮!首次击败GANs:《Diffusion Models Beat GANs on Image Synthesis》
4、条件分类器技术进一步发展:《Classifier-Free Diffusion Guidance》
5、Image-to-Image经典之作《Palette: Image-to-Image Diffusion Models》
7、stable diffusion的原型:《High-Resolution Image Synthesis with Latent Diffusion Models》
8、高调进军视频领域:《Video Diffusion Models》
9、了不起的attention:《Prompt-to-Prompt Image Editing with Cross Attention Control》
10、Unet已死,transformer当立!《Scalable Diffusion Models with Transformers》