[AI算法][深度学习]:1*1卷积的作用

本文探讨了1x1卷积核在深度学习模型中的重要作用,如NIN和GoogLeNet。1x1卷积不仅能够实现跨通道特征的交互与整合,还能够通过调整通道数进行参数量的优化,有效减少模型复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1×11\times11×1卷积作用?

​ NIN(Network in Network)是第一篇探索1×11\times11×1卷积核的论文,这篇论文通过在卷积层中使用MLP替代传统线性的卷积核,使单层卷积层内具有非线性映射(激活函数)的能力,也因其网络结构中嵌套MLP子网络而得名NIN。NIN对不同通道的特征整合到MLP自网络中,让不同通道的特征能够交互整合,使通道之间的信息得以流通,其中的MLP子网络恰恰可以用1×11\times11×1的卷积进行代替。

​ GoogLeNet则采用1×11\times11×1卷积核来减少模型的参数量。在原始版本的Inception模块中,由于每一层网络采用了更多的卷积核,大大增加了模型的参数量。此时在每一个较大卷积核的卷积层前引入1×11\times11×1卷积,可以通过分离通道与宽高卷积来减少模型参数量。

以图1为例,在不考虑参数偏置项的情况下,若输入和输出的通道数为C1=16C_1=16C1=16,则左半边网络模块所需的参数为(1×1+3×3+5×5+0)×C1×C1=8960(1\times1+3\times3+5\times5+0)\times C_1\times C_1=8960(1×1+3×3+5×5+0)×C1×C1=8960
假定右半边网络模块采用的1×11\times11×1卷积通道数为C2=8C_2=8C2=8(满足C1>C2)(满足C_1>C_2)(满足C1>C2),则右半部分的网络结构所需参数量为(1×1×(C1+3C2)+3×3×C2+5×5×C2)×C1=5248(1\times1\times (C_1+3C_2)+3\times3\times C_2 +5\times5\times C_2)\times C_1=5248(1×1×(C1+3C2)+3×3×C2+5×5×C2)×C1=5248
可以在不改变模型表达能力的前提下大大减少所使用的参数量。

在这里插入图片描述

图1 Inception模块

综上所述,1×11\times 11×1卷积的作用主要为以下两点

  • 实现信息的跨通道交互和整合。
  • 对卷积核通道数进行降维和升维(改变通道数),减小参数量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值