[AI算法][深度学习]:卷积神经网络中卷积和池化特征图的维度变化(不能被整除问题)

在卷积的过程中,卷积核大小kernel_sizekernel\_sizekernel_size,填充PaddingPaddingPadding,步长StrideStrideStride。都会影响卷积输出的维度。假设输入维度为H∗W∗CH*W*CHWC,卷积核的大小为kkk,填充值为ppp,步长为sss,则输出特征图的维度为H′∗W′∗C′H'*W'*C'HWC,参数量为:k2× C× C′+C′k^2\times\ C\times\ C'+C'k2× C× C+C
H′=H+2p−ks+1 H'=\frac {H+2p-k}{s}+1 H=sH+2pk+1
而当计算池化操作时,参数量为0,且由于没有padding操作,则:
H′=H−ks+1 H'=\frac {H-k}{s}+1 H=sHk+1
特别的:
当计算尺寸不被整除时,卷积向下取整,池化向上取整。(只在GoogLeNet中遇到过。)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值