杭电OJ | 2072 单词数(C语言、C++)

本文介绍了一种使用C++编程语言统计输入文本中不同单词数量的方法。通过将输入的字符串分割成单词,并利用二维字符数组存储每个单词,然后进行比较,找出不重复的单词,最终输出不同单词的总数。此外,还提到了使用C++标准模板库中的set容器可以更简洁地实现相同功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔记

1. 对于二维数组a[1][1],a[0]指的是第一行的元素,是一个一维数组(在此题中是字符串)

2. 找几个数中不同的元素:与其他所有元素对比,如果都不同,则这个元素就是独一无二的,必然不同。

2072  单词数

Input        有多组数据,每组一行。由小写字母和空格组成,没有标点符号,遇到#时表示输入结束。

Output     每组只输出一个整数,其单独成行,该整数代表一篇文章里不同单词的总数。

Sample Input

you are my friend

#

Sample Output

4

#include<stdio.h>
#include<string.h>
int main()
{
    char input[1000];
    while(strcmp(gets(input),"#")!=0){
    	int i=0, j=0, p=0;
    	char output[1000][1000];
    	while(p<strlen(input)){
			if(input[p]==' '){
				p++;
			}
			else{
				while(input[p]!=' '&&input[p]!='\0'){
	    			output[i][j] = input[p];
	    			p++;
	    			j++;
				}
				output[i][j] = '\0';    //不然下面取字符串会出错
				i++;
				j=0;
			}
		}
		
		int m,n;
		int sum = 0;
		for(m=0; m<i; m++){
			int flag = 0;
			for(n=m+1; n<i; n++){
				if(strcmp(output[m],output[n])==0){
					flag = 1;
				}
			}
			if(flag!=1){
				sum++;
			}
		}
		printf("%d\n",sum);
	}
    return 0;
}

C++的写法就很简单了,因为有set这个东西...

参考:https://blog.csdn.net/Shishishi888/article/details/90645522

### 查找杭电OJ题库中编号为1002的题目及其C语言实现 对于杭电在线评测系统(HDU OJ)中的第1002号问题,该问题是关于计算多个整数的最大公约数(GCD),并进一步利用这些最大公约数来解决特定场景下的应用。然而,具体到此题目的描述并未直接给出,但可以推测其核心在于处理多组测试数据以及求解两个或更多整数之间的关系。 针对此类涉及最大公约数的问题,在C语言中可以通过欧几里得算法高效地解决问题。下面提供了一个基于给定条件的解决方案: ```c #include <stdio.h> // 计算两数的最大公约数函数定义 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // 主程序入口 int main() { int T; // 测试案例数量 scanf("%d", &T); while(T--) { int n; // 整数的数量 scanf("%d", &n); int num[n]; for(int i = 0; i < n; ++i){ scanf("%d", &num[i]); } // 假设第一个数作为初始值 int result = num[0]; // 迭代计算所有数字间的最小公倍数(LCM), 使用gcd辅助计算LCM for(int i = 1; i < n; ++i){ result = ((result * num[i]) / gcd(result, num[i])); } printf("%d\n", result); } return 0; } ``` 上述代码实现了读取多组测试用例的功能,并对每一组内的若干个正整数进行了最小公倍数(LCM)的计算[^1]。这里采用了辗转相除法(也称为欧几里德算法)用于寻找任意一对整数的最大公约数(GCD),进而通过公式`lcm(a,b)=a*b/gcd(a,b)`得到两者之间最小公倍数的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值