pytorch 分批训练

#返回的数据集,既有标号又有数据


from torch.utils.data import Dataset, DataLoader


class LoadDataset(Dataset):
    def __init__(self, data):
        self.x = data

    def __len__(self):
        return self.x.shape[0]

    def __getitem__(self, idx):
        return torch.from_numpy(np.array(self.x[idx])).float(),\
                                torch.from_numpy(np.array(idx))



x_train = np.loadtxt("./data_s/CITE/cite.txt")
dataset = LoadDataset(x_train)

#在模型训练过程中

    train_loader = DataLoader(dataset, batch_size=256, shuffle=True)  #把打好序号的数据送入DataLoader中,打乱顺序并分批,每批256组数据。

    for epoch in range(args.pretrain_epoch):

        for batch_idx, (x, _) in enumerate(train_loader):   #遍历每批数据
            x = x.to(device)                                #将一批数据送入device中 

            z, x_bar = model(x)
            loss = F.mse_loss(x_bar, x)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        with tor
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值