TCGA相关分析之数据筛选 | python从TCGA-GBM的RNA-seq表达数据count中筛选出各genes对应的案例cases的表达量count矩阵

该博客讲述了如何使用Python代替R语言,从多个count数据文件中筛选出gene_name、gene_type为lncRNA的FPKM表达量。作者首先整理count文件到新文件夹,然后将tsv文件转换为xls以便进行行列操作,最后提取所需列并整合到单一文件。虽然过程中因模块限制进行了文件格式转换,但最终实现了数据预处理的目标,为后续的GBM患者RNA-seq数据分析做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接上一篇文章,现在开始筛选数据组成count矩阵。
上一篇:TCGA下载GBM患者的RNA-seq数据

上一篇结束,下载到初始数据(图一图二是下载之后的文件夹以及每一个文件夹中的count数据文件)
在这里插入图片描述
在这里插入图片描述
需要从每一个count数据文件中筛选出gene_name、gene_type为lncRNA、FPKM表达量,效果图如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

由于不会R语言,就用python来实现

步骤:

  • 从每一个文件夹中提取出来count数据文件,整理到一个新文件夹中
  • 将所有count数据文件中需要的列提取出来,整合到一个文件中
  • 在整合文件中手动复制粘贴添加 gene_id、gene_name、gene
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值