【Leetcode 72】编辑距离

本文深入解析编辑距离算法,一种衡量两个字符串相似度的方法。通过实例演示如何通过插入、删除和替换操作将一个单词转换为另一个单词,同时提供C++代码实现,帮助读者理解算法原理及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

测试用例1:

输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)

测试用例2:

输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

实现参考过程:

class Solution {
public:
  
    int minDistance(string word1, string word2) {
        int len_a = word1.size();
        int len_b = word2.size();
        vector<vector<int>> dp(len_a+1, vector<int>(len_b+1, 0));
       

        for (int i=0; i<=len_a; i++)
            dp[i][0] = i;        
        for (int i=0; i<=len_b; i++)
            dp[0][i] = i;

        for(int i=1; i<=len_a; i++){
            for(int j=1; j<=len_b; j++){                
                if(word1[i-1]==word2[j-1]){
                    dp[i][j] = dp[i-1][j-1];                   
                }else
                    dp[i][j] = min(1+dp[i-1][j-1],min(1+dp[i][j-1], 1+dp[i-1][j]));
            }
        }
        return dp[len_a][len_b];          
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值