自己随意编写一份测试数据,所用的测试数据如下,需求是按照第一列的字母分组,然后按照第二列数据取出每一组内前N个数据,后面我分别列出了我使用的三种方案来实现该需求,不同方案在不同的场景下会有各自的优势
a 25 b 36 c 24 d 45 e 60 a 33 b 26 c 47 d 43 e 62 a 13 b 16 c 42 d 66 e 31 a 19 b 75 c 61 d 71 e 80 a 85 b 90 c 54 d 48 e 62 |
第一种方式:适合求每一组别中所需要的top个数很大的情况,是对数据分组后对每一个组内进行排序,先获得所有组的key的集合,然后循环每个key排序,最后只需要采用take(num)即可得到前num个数据。
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/*适合求每一组别中所需要的top个数很大的情况*/
public class GroupTopN {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("GroupTopN").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<String, Iterable<Integer>> grouppair = sc.textFile("E:/mr/grouptopn.txt").mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Integer> call(String line) throws Exception {
return new Tuple2<String, Integer>(line.split(" ")[0],Integer.parseInt(line.split(" ")[1]));
}
}).groupByKey();
// System.out.println(linepair.count());
List<String> keys = grouppair.map(new Function<Tuple2<String,Iterable<Integer>>, String>() {
private static final long serialVersionUID = 1L;
@Override
public String call(Tuple2<String, Iterable<