leetcode 11. 盛最多水的容器 java

本文探讨了在给定数组中寻找两条线,使其与x轴构成的容器容量最大的问题。通过对比双层循环与双指针法,展示了如何从效率较低的双层循环优化至高效的单层循环,极大提升了算法执行速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

在这里插入图片描述
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49


分析:

第一时间想到的是双层循环,暴力破解。

public int maxArea(int[] height) {
        int len=height.length;
        int S=0,max=0;
        for (int i=0;i<len;i++){
            for (int j=i+1;j<len;j++){
                S=(j-i)*Math.min(height[i],height[j]);
                max= Math.max(S,max);
            }
        }
        return max;
}

执行用时 :438 ms, 在所有 Java 提交中击败了18.33%的用户。

如果要优化的话感觉双层循环要降解一下,变成单层,然而我想不到什么好的方法。于是直接去看了官方答案。

学习:

官方答案:双指针法。

个人理解:
已知①面积S=长*高,②高度受限于左右边界的较小值。

最初,双指针分别指向最左边和最右边,此时长已经达到最大,没有上升空间,如果希望面积增大,只能高变大。

希望高变大,因为②的限制,应该是将左右边界中较小的一端变大,也就是往有数据的方向移动以寻找更高的边界,来看看能不能将面积变大。如果能,说明移动后带来的高的增加比在原地带来的宽更有性价比。将边界之外的可以淘汰掉。

不断循环,将高变大,直至左右指针重合。

代码:

public int maxArea(int[] height) {
        int left=0,right=height.length-1,max=0,S=0;
        while (left<right){
            S=(right-left)*Math.min(height[left],height[right]);
            max=Math.max(max,S);
            if (height[left]<height[right]){
                left++;
            }else {
                right--;
            }
        }
        return max;
}

执行用时 :4 ms, 在所有 Java 提交中击败了74.49%的用户。时间一下缩短100倍,双重循环是真的费时间啊。(ノ ̄д ̄)ノ

总结:

关于“左右两边”的问题可以考虑双指针算法,不断寻找更优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值