题目:
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
分析:
第一时间想到的是双层循环,暴力破解。
public int maxArea(int[] height) {
int len=height.length;
int S=0,max=0;
for (int i=0;i<len;i++){
for (int j=i+1;j<len;j++){
S=(j-i)*Math.min(height[i],height[j]);
max= Math.max(S,max);
}
}
return max;
}
执行用时 :438 ms, 在所有 Java 提交中击败了18.33%的用户。
如果要优化的话感觉双层循环要降解一下,变成单层,然而我想不到什么好的方法。于是直接去看了官方答案。
学习:
官方答案:双指针法。
个人理解:
已知①面积S=长*高,②高度受限于左右边界的较小值。
最初,双指针分别指向最左边和最右边,此时长已经达到最大,没有上升空间,如果希望面积增大,只能高变大。
希望高变大,因为②的限制,应该是将左右边界中较小的一端变大,也就是往有数据的方向移动以寻找更高的边界,来看看能不能将面积变大。如果能,说明移动后带来的高的增加比在原地带来的宽更有性价比。将边界之外的可以淘汰掉。
不断循环,将高变大,直至左右指针重合。
代码:
public int maxArea(int[] height) {
int left=0,right=height.length-1,max=0,S=0;
while (left<right){
S=(right-left)*Math.min(height[left],height[right]);
max=Math.max(max,S);
if (height[left]<height[right]){
left++;
}else {
right--;
}
}
return max;
}
执行用时 :4 ms, 在所有 Java 提交中击败了74.49%的用户。时间一下缩短100倍,双重循环是真的费时间啊。(ノ ̄д ̄)ノ
总结:
关于“左右两边”的问题可以考虑双指针算法,不断寻找更优解。