【全网首个】华为NPU使用MindIE推理部署Qwen3系列

省略docker和模型下载,可参考我的其他文章。

基于mindie镜像部署,首先解压并load 镜像。
前往昇腾社区/开发资源下载适配本模型的镜像包mindie:2.0.T17.B010-800I-A2-py3.11-openeuler24.03-lts-aarch64.tar.gz

docker load -i mindie_2.0.T17.B010-800I-A2-py3.11-openeuler24.03-lts-aarch64.tar.gz(下载的镜像名称与标签)

完成加载镜像后,请使用docker images命令确认查找具体镜像名称与标签。

当前容器支持TP=1/2/4/8推理

新建容器

docker run -it -d --net=host --shm-size=1g \
    --name qwen314b \
    --device=/dev
### 华为NPU Docker部署 LLama-Factory 教程 #### 准备工作 为了在华为NPU使用Docker部署LLama-Factory,需先完成必要的准备工作。这包括但不限于安装并配置Docker环境,在华为EulerOS 2.0 (aarch64架构) 上的操作可参照特定指导文档[^1]。 #### 获取镜像 执行如下命令来拉取适用于Ascend NPU的LLama-Factory Docker镜像: ```bash docker pull swr.cn-east-317.qdrgznjszx.com/donggang/llama-factory-ascend910:cann8-py310-torch2.2.0-ubuntu18.04 ``` #### 编写启动脚本 创建用于运行容器的Shell脚本`docker_run.sh`,并通过编辑器如vim对其进行修改以适应具体需求: ```bash touch docker_run.sh vim docker_run.sh ``` 此阶段应确保编写的脚本能正确加载所需的硬件驱动程序和支持库文件,并设置合理的参数以便顺利启动容器化应用。 #### 多卡训练支持 值得注意的是,自0.8版起LLama-Factory已经加入了对于多卡训练的支持,特别是针对华为 Ascend 920B3 的优化使得其能够更加简便地实现这一特性而不需要复杂的额外配置过程[^2]。 #### CANN环境搭建 考虑到LLama-Factory依赖于CANN(Compute Architecture of Neural Network),因此还需要下载最新版本的CANN软件包并按照官方说明完成安装流程[^3]。 #### 开始微调与训练 最后一步则是进入项目目录并初始化所需Python包,同时确认集群环境中各节点间的通信正常无误: ```bash cd LLaMA-Factory pip install -e ".[metrics]" env | grep RANK_TABLE_FILE ``` 上述操作完成后即可以开始利用华为NPU进行大规模预训练模型的微调作业了[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值