DWS开发==递归

  • DWS数据仓库服务数据库递归案例
with recursive t_result as(
select dm,sj_dm,name,1 as level from test_rec_part where si_dm > 10 
union all 
select t2.dm,t2.sj_dm,t2.name||'>'||t1.name,t1.level+1 from t_result t1join test_rec_part t2 on t2.sj_dm = t1.dm
)
select * from t_result;
### DWS开发的最佳实践 #### 1. 明确业务需求并设计合理的宽结构 DWS层的主要职责是对DWB层的结果进行进一步加工,生成适合分析和查询的宽。为了满足不同时间段(如本日、本月、本周等)以及标签对应同期据的需求,需提前与业务方沟通明确具体指标定义及其计算逻辑[^1]。建议在设计阶段引入业务人员参与评审,确保最终产出能够覆盖实际应用场景。 #### 2. 合理选用模型架构 根据实际情况灵活应用Duplicate Key 和 Aggregate Key两种建模方式。当存在频繁更新或者需要保留历史记录时,推荐使用Duplicate Key;而对于固定不变的事实类据,则可以考虑Aggregate Key以减少冗余提高性能效率。 #### 3. 实现高效的处理流程 构建稳定可靠的ETL/ELT管道至关重要,在此过程中需要注意以下几点: - **增量加载机制**:通过时间戳或其他唯一标识符实现仅提取新增或修改过的据,从而降低资源消耗。 - **错误容忍度设置**:允许一定程度上的失败重试次,并提供清晰的日志便于排查问题所在。 - **并发控制策略**:依据硬件条件合理分配任务优先级及线程,最大化利用集群能力完成大规模运算工作量。 #### 4. 注重元据管理与文档编写 良好的元据管理体系有助于提升整个项目的透明性和可控性。应该详细记录每张的目的说明、字段解释还有依赖关系图谱等内容[^3] 。此外还需定期审查这些资料是否仍然适用当前环境变化情况之下保持最新状态。 #### 5. 测试验证环节不可忽视 针对所创建出来的每一版新版本都需要进行全面的功能测试和技术评估,包括但不限于准确性校验(对比源端原始值),边界值探索(极端条件下现如何) ,压力极限挑战 (模拟高峰期负载状况 )等方面的现水平达到预期目标之后再上线部署运行生产环境中去服务真实客户群体。 ```python def dws_etl_process(source_data, target_table): """ A simplified example of an ETL process for the DWS layer. Args: source_data (DataFrame): Data from previous layers or external systems. target_table (str): Name of the table where processed data will be stored. Returns: None """ import pandas as pd # Step 1: Filter and transform raw data into required format filtered_df = source_data[source_data['date'] >= 'current_date'] transformed_df = calculate_metrics(filtered_df) # Step 2: Apply deduplication logic based on key fields unique_records = remove_duplicates(transformed_df, keys=['id', 'timestamp']) # Step 3: Insert updated records to destination storage system insert_into_database(unique_records, target_table) def calculate_metrics(df): """Perform necessary calculations.""" df['metric_a'] = df.apply(lambda row: complex_calculation(row), axis=1) return df def remove_duplicates(dataframe, keys): """Remove duplicate entries using specified primary keys.""" return dataframe.drop_duplicates(subset=keys).reset_index(drop=True) def insert_into_database(records, db_table_name): """Insert cleaned up dataset back into database.""" pass # Placeholder function call; actual implementation depends on DBMS used. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会飞的乌龟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值