
NLP
文章平均质量分 90
云淡风轻__
Take your time, step by step~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI快车道PaddleNLP系列直播课6|语义检索系统快速搭建落地
语义检索系统:不同于基于字面匹配检索,在语义层面的检索泛化效果更好。语义检索系统方案的一些问题:用什么架构?各模块用什么模型?模型如何调优?有多少训练数据?训练数据的形式?语义检索效果如何自动化评估?等PaddleNLP语义检索系统给出的回答:架构:recall+ranking,模型:ERNIE-Gram,千万级无监督语料原创 2022-02-07 12:40:59 · 1868 阅读 · 0 评论 -
AI快车道PaddleNLP系列直播课5|RocketQA:预训练时代的端到端问答
问答系统是信息检索系统的一种高级形式,旨在用准确简洁的自然语言回答用户自然语言提出的问题。 应用场景:搜索引擎、智能设备和智能客服。 分类:文本问答,知识库问答,表格问答和视频问答。 技术发展:规则方法、统计机器学习时代、深度学习方法。 预训练时代来了,端到端的系统可以做到全局优化,这种端到端问答系统一般是都是检索式问答,分为两阶段:先从语料库中检索候选段落,再阅读理解从候选段落中抽取候选答案。 本课围绕检索阶段原创 2022-02-05 02:18:21 · 1868 阅读 · 0 评论 -
XLNet:运行机制及和Bert的异同比较 - 知乎
XLNet在自回归语言模型中,通过PLM引入了双向语言模型。也就是在预训练阶段,采用attention掩码的机制,通过对句子中单词的排列组合,把一部分下文单词排到上文位置。 PLM预训练目标、更多更高质量的预训练数据,transformerXL的主要思想。这就是XLNet的三个主要改进点,这使XLNet相比bert在生成类任务上有明显优势,对于长文档输入的nlp任务也会更有优势。原创 2022-02-01 17:32:40 · 2710 阅读 · 0 评论 -
NLP中的预训练技术是如何一步步的发展到BERT的
ELMo通过上下文动态调整wordembedding解决了多义词问题,但LSTM的特征抽取能力远不如transformer。且拼接方式双向融合的特征融合能力弱GPT用上了transformer特征抽取能力增强,但是采用单向语言模型,只通过上文进行预测BERT,transformer+双向语言模型+更大规模数据。BERT的效果:在11个各种类型的NLP任务中达到目前最好的效果,有些任务性能有极大提升引入先验的语言学知识,对数据有限的任务很重要,两阶段模式是很好的解决方法原创 2022-01-28 22:48:57 · 648 阅读 · 0 评论