接受者操作特征曲线(receiver operating characteristic curve, 或者叫ROC曲线)。
1. 基本概念
分类器是将一个实例映射到一个特定类的过程。roc分析的是二元分类模型。
二元分类模型的个案预测有四种结局:
- 真阳性(TP):诊断为有,实际上也有病。
- 伪阳性(FP):诊断为有,实际上却没有病。
- 真阴性(TN):诊断为没有,实际上也没有病。
- 伪阴性(FN):诊断为没有,实际上却有病。
2. roc空间
ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。
- TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。
$$ TPR = \frac{TP}{TP+FN}$$ - FPR:在所有实际为阴性的的样本中,被错误地判断为阳性之比率。
$$ FPR = \frac{FP}{FP+TN}$$
给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)真实值和预测值计算出一个 (X=FPR, Y=TPR) 座标点。
从 (0, 0) 到 (1,1) 的对角线将ROC空间划分为左上/右下两个区域,在这条线的以上的点代表了一个好的分类结果(胜过随机分类),而在这条线以下的点代表了差的分类结果(劣于随机分类)。
完美的预测是一个在左上角的点,在ROC空间座标 (0,1)点,X=0 代表着没有伪阳性,Y=1 代表着没有伪阴性(所有的阳性都是真阳性);也就是说,不管分类器输出结果是阳性或阴性,都是100%正确。
比如上图有4中预测结果:
- 点与随机猜测线的距离,是预测力的指标:离左上角越近的点预测(诊断)准确率越高。离右下角越近的点,预测越不准。
- 在A、B、C三者当中,最好的结果是A方法。
- B方法