机器学习笔记——roc曲线

ROC曲线是评估二元分类模型的重要工具。它通过绘制真阳性率(TPR)与伪阳性率(FPR)的关系,展示了模型性能。ROC空间中的点越靠近左上角,代表模型预测力越强。曲线下面积(AUC)衡量模型的预测能力,AUC=1表示完美分类器,而AUC=0.5则表示随机猜测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接受者操作特征曲线(receiver operating characteristic curve, 或者叫ROC曲线)。

1. 基本概念

分类器是将一个实例映射到一个特定类的过程。roc分析的是二元分类模型。

二元分类模型的个案预测有四种结局:

  1. 真阳性(TP):诊断为有,实际上也有病。
  2. 伪阳性(FP):诊断为有,实际上却没有病。
  3. 真阴性(TN):诊断为没有,实际上也没有病。
  4. 伪阴性(FN):诊断为没有,实际上却有病。

2. roc空间

ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。

  • TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。
    $$ TPR = \frac{TP}{TP+FN}$$
  • FPR:在所有实际为阴性的的样本中,被错误地判断为阳性之比率。
    $$ FPR = \frac{FP}{FP+TN}$$

给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)真实值和预测值计算出一个 (X=FPR, Y=TPR) 座标点。

从 (0, 0) 到 (1,1) 的对角线将ROC空间划分为左上/右下两个区域,在这条线的以上的点代表了一个好的分类结果(胜过随机分类),而在这条线以下的点代表了差的分类结果(劣于随机分类)。

完美的预测是一个在左上角的点,在ROC空间座标 (0,1)点,X=0 代表着没有伪阳性,Y=1 代表着没有伪阴性(所有的阳性都是真阳性);也就是说,不管分类器输出结果是阳性或阴性,都是100%正确。

 

 比如上图有4中预测结果:

  • 点与随机猜测线的距离,是预测力的指标:离左上角越近的点预测(诊断)准确率越高。离右下角越近的点,预测越不准。
  • 在A、B、C三者当中,最好的结果是A方法。
  • B方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值