[ARC121D]1 or 2

博客围绕一道AtCoder的题目展开,最初有让max和min匹配的模糊思路但无法证明。后尝试二分方向无果,最终证明该思路可行,即两个数匹配时正序交换更优,max应匹配min。不匹配相当于与0匹配,需枚举0的个数,时间复杂度O(n2),认为是难得的贪心好题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

传送门 to AtCoder

思路

想必大家都有一个模糊的思路是,让 max ⁡ \max max min ⁡ \min min 匹配。直觉上,这好像是最优的,但是又证明不来。

由于对极差的刻板印象,我往二分的方向想。想了半天啥结果也没有。实在是令人沮丧……

再看看这道题。事实上,上面那玩意儿完全可以证明!其证明也非常简单。考虑 a ≤ b ≤ c ≤ d a\le b\le c\le d abcd 时的两种匹配 ⟨ a , c ⟩ + ⟨ b , d ⟩ \langle a,c\rangle+\langle b,d\rangle a,c+b,d ⟨ a , d ⟩ + ⟨ b , c ⟩ \langle a,d\rangle+\langle b,c\rangle a,d+b,c,你会发现
min ⁡ ( a + c , b + d ) = a + c ≤ min ⁡ ( b + c , a + d ) max ⁡ ( a + c , b + d ) = b + d ≥ max ⁡ ( b + c , a + d ) \min(a+c,b+d)=a+c\le\min(b+c,a+d)\\ \max(a+c,b+d)=b+d\ge\max(b+c,a+d) min(a+c,b+d)=a+cmin(b+c,a+d)max(a+c,b+d)=b+dmax(b+c,a+d)

也就是说,一旦两个数 c , d    ( c ≤ d ) c,d\;(c\le d) c,d(cd) 所匹配的数字 a , b a,b a,b 也是正序,那么交换会更优。于是 max ⁡ \max max 只能匹配到 min ⁡ \min min 去了。

不过上面这是必须两两匹配的情况。还有不匹配怎么办?事实上,不匹配相当于与 0 0 0 匹配。所以枚举一下 0 0 0 的个数即可。

时间复杂度 O ( n 2 ) \mathcal O(n^2) O(n2) 。真是难得的贪心好题啊。

代码

// By DD(XYX)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<ctime>
#include<map>
#define ll long long
#define MAXN 5005
#define uns unsigned
#define INF 0x7f7f7f7f
#define MOD 998244353ll
#define lowbit(x) ((x)&(-(x)))
using namespace std;
inline ll read(){
	ll x=0;bool f=1;char s=getchar();
	while((s<'0'||s>'9')&&s>0){if(s=='-')f^=1;s=getchar();}
	while(s>='0'&&s<='9')x=(x<<1)+(x<<3)+s-'0',s=getchar();
	return f?x:-x;
}
int n,m;
ll a[MAXN],ans=1e18,mn,mx;
vector<ll>g;
int main()
{
	n=read();
	for(int i=1;i<=n;i++)a[i]=read();
	for(int i=1;i<=n;i++)g.push_back(a[i]);
	sort(g.begin(),g.end());
	mn=1e18,mx=-1e18;
	for(uns i=0,lim=g.size();i<(lim>>1);i++)
		mn=min(mn,g[i]+g[lim-i-1]),mx=max(mx,g[i]+g[lim-i-1]);
	if(g.size()&1)mn=min(mn,g[g.size()>>1]),mx=max(mx,g[g.size()>>1]);
	ans=min(ans,mx-mn);
	for(int i=1;i<=n;i++){
		g.push_back(0);
		for(uns i=g.size()-1;i>0;i--)
			if(g[i]<g[i-1])swap(g[i],g[i-1]);
		mn=1e18,mx=-1e18;
		for(uns i=0,lim=g.size();i<(lim>>1);i++)
			mn=min(mn,g[i]+g[lim-i-1]),mx=max(mx,g[i]+g[lim-i-1]);
		if(g.size()&1)mn=min(mn,g[g.size()>>1]),mx=max(mx,g[g.size()>>1]);
		ans=min(ans,mx-mn);
	}
	printf("%lld\n",ans);
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值