Linux上安装torch-geometric(pyg)1.7.2踩坑记录

重点:1.一定要在创建虚拟环境的时候设置好python版本。2.一定要先确定使用1.X还是2.X的pyg库,二者不兼容。3.一定要将cuda、torch、pyg之间的版本对应好。所以,先确定pyg版本,再确定torch和cuda的版本。

结论:如果在ubuntu上安装python=3.7,torch=1.7.0,cuda=11.0,pyg=1.7.2,只用四行代码。

1)创建虚拟环境conda create -n <evn name> python==3.7

2)安装torch、torchvision、torchaudio、cudatoolkit
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0

3)安装scatter、sparse、cluster、spline_conv
pip install torch_scatter-2.0.5-cp37-cp37m-linux_x86_64.whl torch_sparse-0.6.8-cp37-cp37m-linux_x86_64.whl torch_cluster-1.5.8-cp37-cp37m-linux_x86_64.whl torch_spline_conv-1.2.0-cp37-cp37m-linux_x86_64.whl

4)安装pyg,如果要安装2.X版本的可以不加版本号
pip install torch-geometric==1.7.2

-----------------------------手动分割线,下面内容分析了怎么老是安装出错,下次再安装的时候来看看,内容有点乱----------------------------------

安装torch-geometric(pyg)的坑

踩坑一:无需自行安装CUDA,安装torch-gpu时,安装相应的cudatoolkit就可以了。所以nvcc -V找不到cuda版本时没关系。

踩坑二:没有先确定pyg的版本。还有就是pip install torch-geometric的时候没有加上版本号。这两种情况都会报错 RuntimeError: The ‘data’ object was created by an older version of PyG. If this error occurred while loading an already existing dataset, remove the ‘processed/’ directory in the dataset’s root folder and try again.
原因是跑人家的代码中pyg版本与你安装的版本不

### 安装 PyG-Lib 及其依赖项 为了成功安装 PyG-Lib (PyTorch Geometric) 和其依赖项 `torch-scatter`, `torch-sparse`, `torch-cluster`, `torch-spline-conv` 以及 `torch-geometric`,建议遵循官方推荐的方法来确保兼容性和稳定性。 对于特定版本的 PyTorch 和 CUDA,可以使用如下命令进行安装: ```bash pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-{version}+cu{version}.html[^1] ``` 这里 `{version}` 需要替换为实际使用的 PyTorch 版本号和 CUDA 版本号。例如,如果使用的是 PyTorch 1.12.0 和 CUDA 11.3,则 URL 应该设置为 `https://data.pyg.org/whl/torch-1.12.0+cu113.html`. 需要注意的是,在某些情况下最新版的 PyTorch 或者 PyTorch Geometric 可能尚未完全适配所有环境配置[^2]。因此,当遇到安装问题时,可以选择指定较低版本的 PyTorch 来保证兼容性。比如通过 Conda 安装特定版本的 PyTorch: ```bash conda install pytorch=1.10 torchvision torchaudio cudatoolkit=10.2 -c pytorch ``` 另外一种方式是单独依次安装各个依赖库,并明确指明它们所基于的 PyTorch 和 CUDA 的具体版本: ```bash pip install torch_scatter -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_sparse -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_cluster -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_spline_conv -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_geometric[^3] ``` 此过程可能会比较耗时,请保持耐心等待完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值