#2608. 「NOIP2013」转圈游戏(也是快速幂系列的)

该博客介绍了NOIP2013年的一道游戏问题,涉及小伙伴围坐一圈按规则移动位置。在经过10^k轮后,探讨了如何使用快速幂算法确定初始编号为x的小伙伴最终所在位置。文章强调了解题思路的重要性,包括公式推导和避免使用超时的for循环解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述题目链接在此

n个小伙伴(编号从 0 到 n−1)围坐一圈玩游戏。按照顺时针方向给 n 个位置编号,从 0 到 n−1。最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,……,依此类推。

游戏规则如下:每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,……,依此类推,第 n−m 号位置上的小伙伴走到第 0 号位置,第 n−m+1 号位置上的小伙伴走到第 1 号位置,……,第 n−1 号位置上的小伙伴顺时针走到第 m−1 号位置。

现在,一共进行了 10^k​​ 轮,请问 x 号小伙伴最后走到了第几号位置。

【输入格式】

输入共 1 行,包含 4 个整数 n、m、k、x,每两个整数之间用一个空格隔开。

【输出格式】

输出共 1 行,包含 1 个整数,表示 10^k 轮后 x 号小伙伴所在的位置编号。

【样例输入 1】

10 3 4 5

【样例输出 1】

5

【数据范围与提示】

对于 30% 的数据,0<k<7;

对于 80% 的数据,0 < k < 10^7;

对于 100% 的数据,1 < n < 10^6​​,0 < m < n,1≤x≤n,0 < k < 10^9。

思路: 这道题也是快速幂,只是不太明显,但是仔细看一下题目,还是看得出来这是快速幂的,因为是一直循环,而且出现了

10^k这样敏感的东西,所以我们可以想到用快速幂,但是这道题不单单是快速幂,还要推公式,就是不断的看这道题的答案,是怎么来的,才能把公式推出来,不然这道题是做不出来的,公式的推理思路我写在了代码那里,仅供参考,还是希望动笔算一下。

代码实现

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll n,m,k,p;
ll power(ll x,ll y)
{
	ll ans=1;
	while(y>0)
	{
		if(y&1) ans=ans*x%n;
		y>>=1; x=x*x%n;	
	}
	return ans;
}
//因为提到进行了 10^k,所以用到了mod运算 
int main()
{
	scanf("%lld%lld%lld%lld",&n,&m,&k,&p);
	ll answer=(p+m*power(10,k))%n; 
	/*power(10,k)总共n-1个位置的情况,那么乘以起始位置就是当前的位置
	然后加上要求的自己的位置,就是经过10^k之后的位置,再除以轮回就是所在的位置编号
	%n是为了防止重复和溢出 
	*/ 	 
	printf("%lld\n",answer);
	return 0;
}

这道题因为要推公式,而且是noip提高组的题,所以一定要细细琢磨,大概难度是3.5吧,其实多算算也会发现没那么难,但如果算上思考的时间,可能就有点难度了,而且很多人可能会用for循环来找,那么一定会超时。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值