scipy csr_matrix和csc_matrix函数的用法(通俗易懂版)

本文详细解析了scipy.sparse库中csr_matrix和csc_matrix两种稀疏矩阵的构造及其区别。通过示例展示了如何使用indptr、indices和data创建这两种矩阵,并解释了它们在存储和索引上的特性。对于行和列操作,csr_matrix更适合按行访问,而csc_matrix更适合按列访问。这两个数据结构在处理大规模稀疏数据时能有效节省内存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

  • scipy.sparse库中的函数
  • 为了将稀疏的np.array数据进行压缩
  • 两者一个是行一个是列,基本思想差不多

csr_matrix

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
解读:
 	indptr:代表的是每行有几个值(第一个值默认是0)
 		第一行:2-0=2
 		第二行:3-2=1
 		第三行:6-3=3
 	indices:代表值在每行中的位置
 		0:第0行的第一个值1在第02:第0行的第二个值2在第2(0行够了)
 		2:第1行的第一个值3在第2(1行够了)
 		0:第2行的第一个值4在第01:第2行的第二个值5在第12:第2行的第三个值6在第2(完毕)

csc_matrix

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
       [0, 0, 5],
       [2, 3, 6]])
解读:
	indptr:代表的是每列有几个值(第一个值默认是0)
		第一列:2-0=2
		第二列:3-2=1
		第三列:6-3=3
	indices:代表值在每列中的位置
		0:第0列的第一个值1在第02:第0列的第二个值2在第2(0列值够了)
		2:第1列的第一个值3在第2(1列值够了)
		0:第2列的第一个值4在第01:第2列的第一个值5在第12:第2列的第一个值6在第2(完毕)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值