哈夫曼树(最优二叉树
概述
哈夫曼树又称为最优树.
1、路径和路径长度
在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。
通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
2、结点的权及带权路径长度
若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。
结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
3、树的带权路径长度
树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
给定N个权值作为N个叶子节点,构造一棵二叉树,带权路径最短的即为哈夫曼树。
权值大的叶子节点离根节点越近,这样让大的权值乘以短的路径长度,得到的即为带权路径最短的二叉树,哈夫曼树
如图,即为一棵哈夫曼树
构建过程
给定一个数组,升序存储着叶子节点的权值
- 首先取出权值最小的叶子节点,作为左子节点,次小的叶子节点作为右子节点,其权值相加构成两者的父节点
- 父节点的权值重新加入数组重新进行升序排序
- 再次取出重新经过排序的数组的最小的两个节点作为左右子节点,权值相加构成新的父节点的权值
- 父节点加入数组进行重新排序
- 如此反复,当数组中只剩一个元素时,则此节点为根节点,哈夫曼树构建完毕
实现代码
package huffman_tree;
public class Node implements Comparable<Node>{
int value;
Node left;
Node right;
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
public Node(int value) {
this.value = value;
}
@Override
public int compareTo(Node o) {
return this.value - o.value;
}
//前序遍历
public void preOrder(){
//输出父节点
System.out.println(this);
//遍历左子树
if (this.left != null){
this.left.preOrder();
}
//遍历右子树
if (this.right != null) {
this.right.preOrder();
}
}
}
package huffman_tree;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class HuffmanTree {
public static void main(String[] args) {
int[] array = {2,5,6,8,13,19,25,36};
Node huffmanRoot = creat(array);
huffmanRoot.preOrder();
}
public static Node creat(int[] array){
//定义一个集合,储存节点
List<Node> nodes = new ArrayList<>();
//依照数组中的权值,创建新的节点,传入集合中
for (int i : array) {
nodes.add(new Node(i));
}
//当集合中的节点只剩一个的时候,说明构建完成,退出循环
while (nodes.size() > 1){
//首先升序排列
Collections.sort(nodes);
//取出最小和次小权值的两个节点,作为左子节点和右子节点
Node leftNode = nodes.get(0);
Node rightNode = nodes.get(1);
//新建一个父节点,权值为左右子节点权值之和
Node parentsNode = new Node(leftNode.value+rightNode.value);
//将父节点的左右子节点设置为上面的两个左右节点
parentsNode.left = leftNode;
parentsNode.right = rightNode;
//将左右子节点从集合中删除
nodes.remove(leftNode);
nodes.remove(rightNode);
//将父节点加入集合,在下次循环的时候会重新排序
nodes.add(parentsNode);
}
return nodes.get(0);
}
}