【数据结构09】哈夫曼树(最优二叉树)详解,及Java实现

本文深入解析哈夫曼树的构建过程,介绍路径、路径长度、结点权及带权路径长度等概念,详细说明如何通过给定的权值构建一棵带权路径长度最短的哈夫曼树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哈夫曼树(最优二叉树

概述

哈夫曼树又称为最优树.

1、路径和路径长度

在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。

通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。

2、结点的权及带权路径长度

若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。

结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。

3、树的带权路径长度

树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。

给定N个权值作为N个叶子节点,构造一棵二叉树,带权路径最短的即为哈夫曼树。

权值大的叶子节点离根节点越近,这样让大的权值乘以短的路径长度,得到的即为带权路径最短的二叉树,哈夫曼树

如图,即为一棵哈夫曼树
在这里插入图片描述

构建过程

给定一个数组,升序存储着叶子节点的权值

  1. 首先取出权值最小的叶子节点,作为左子节点,次小的叶子节点作为右子节点,其权值相加构成两者的父节点
  2. 父节点的权值重新加入数组重新进行升序排序
  3. 再次取出重新经过排序的数组的最小的两个节点作为左右子节点,权值相加构成新的父节点的权值
  4. 父节点加入数组进行重新排序
  5. 如此反复,当数组中只剩一个元素时,则此节点为根节点,哈夫曼树构建完毕

实现代码

package huffman_tree;

public class Node implements Comparable<Node>{
    int value;
    Node left;
    Node right;

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    public Node(int value) {
        this.value = value;
    }

    @Override
    public int compareTo(Node o) {
        return this.value - o.value;
    }
    //前序遍历
    public void preOrder(){
        //输出父节点
        System.out.println(this);
        //遍历左子树
        if (this.left != null){
            this.left.preOrder();
        }
        //遍历右子树
        if (this.right != null) {
            this.right.preOrder();
        }
    }
}
package huffman_tree;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {
    public static void main(String[] args) {
        int[] array = {2,5,6,8,13,19,25,36};
        Node huffmanRoot = creat(array);
        huffmanRoot.preOrder();
    }
    public static Node creat(int[] array){
        
        //定义一个集合,储存节点
        List<Node> nodes = new ArrayList<>();
        //依照数组中的权值,创建新的节点,传入集合中
        for (int i : array) {
            nodes.add(new Node(i));
        }
        //当集合中的节点只剩一个的时候,说明构建完成,退出循环
        while (nodes.size() > 1){
            //首先升序排列
            Collections.sort(nodes);
            //取出最小和次小权值的两个节点,作为左子节点和右子节点
            Node leftNode = nodes.get(0);
            Node rightNode = nodes.get(1);
            //新建一个父节点,权值为左右子节点权值之和
            Node parentsNode = new Node(leftNode.value+rightNode.value);
            //将父节点的左右子节点设置为上面的两个左右节点
            parentsNode.left = leftNode;
            parentsNode.right = rightNode;
            
            //将左右子节点从集合中删除
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            //将父节点加入集合,在下次循环的时候会重新排序
            nodes.add(parentsNode);
        }
        return nodes.get(0);
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值