布隆过滤器的原理及使用

背景介绍

        在互联网中,我们经常遇到需要在大量数据中判断目标数据是否存在的情况。例如,在网络爬虫中,我们需要判断某个网址是否已经被访问过。为了实现这一功能,通常需要使用一个容器来存储已访问过的网址。如果将这些数据直接存储在磁盘中,每次判断都要进行磁盘查询,这将导致大量的IO操作,效率较低。因此,我们希望将这些数据保存在内存中。在数据量较小的情况下,可以使用Redis来存储这些数据。但是,当数据量超过上千万时,将会消耗几GB甚至几十GB的内存空间。然而,对于仅需要记录数据是否存在的情况而言,这样使用大量内存显然是浪费的。为了解决这个问题,我们可以使用布隆过滤器(Bloom Filter)。布隆过滤器是一种占用空间少且时间效率高的工具。

布隆过滤器介绍

布隆过滤器是一种空间效率极高的概率型数据结构,用于快速判断一个元素是否可能存在于一个集合中。它的核心特点是以极小的存储空间换取高效的查询性能,但存在一定的误判率(False Positive)。

核心原理

  1. 位数组(Bit Array)

    • 布隆过滤器使用一个长度为m的二进制位数组(初始全为0)作为底层存储

    • 例如:[0, 0, 0, 0, 0, 0, 0, 0](m=8)

  2. 多个哈希函数

    • 使用k个不同的哈希函数(h₁, h₂, ..., hₖ)

    • 每个函数都能将输入元素映射到位数组的某个位置

当一个元素被添加到集合中时,它会通过k个哈希函数映射到位数组中的m个位置,并将这些位置的值设置为 1。在检查元素是否在集合中时,检查这些位置是否全为 1。如果其中有任何一个位置为 0,则该元素一定不在集合中;如果所有位置均为 1,则该元素可能在集合中

简单举例

假设现在有3个哈希函数,和一个8位的bit数组。元素a和b,都经过三次哈希函数生成三个哈希值,并映射到位数组的不同的位置,并设置为1。元素a映射的位置是(0,3,7),元素b映射的位置是(2,5,7).

如果一个元素c过来,我们检查它映射后的三个位置是否全是1,就可以判断元素C是否在当前集合中了。

其实我们可以发现,元素a和元素b映射的位置7都是1,也就是说,位置是可能重叠的。假设当前集合已经有a和b了,但是呢一个元素c过来,它映射的位置为(0,2,7),这时候,它的所有位置都是1,布隆过滤器是认为它可能在集合中,但是我们看到元素c是不在当前集合中的。

也是就说,布隆过滤器是可能存在误判的,通俗点说就是假阳性。

关键特性

  1. 没有假阴性(False Negative)

    如果查询返回"不存在",则元素一定不在集合中
  2. 存在假阳性(False Positive)

    可能误判不存在的元素为存在(概率通常<1%)原因:不同元素的哈希位置可能重叠
  3. 不支持元素删除

    简单的布隆过滤器无法安全删除元素(会影响到其他元素)

使用样例

依赖导入

        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>30.1-jre</version> <!-- Use the latest version -->
        </dependency>

Java代码

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;

public class BloomFilterIntersection {

    public static void main(String[] args) {
        // 生成两个测试数据集
        Set<Integer> set1 = generateRandomSet(1_000_000, 10000000);
        Set<Integer> set2 = generateRandomSet(1_000_000, 10000000);

        // 人为添加一些共同元素
        for (int i = 0; i < 1000; i++) {
            int commonElement = 20000000 + i;
            set1.add(commonElement);
            set2.add(commonElement);
        }

        System.out.println("集合1大小: " + set1.size());
        System.out.println("集合2大小: " + set2.size());

        // 使用布隆过滤器查找交集
        long startTime = System.currentTimeMillis();
        Set<Integer> intersection = findIntersection(set1, set2);
        long endTime = System.currentTimeMillis();

        System.out.println("检测到的交集元素数量: " + intersection.size());
        System.out.println("计算耗时: " + (endTime - startTime) + "ms");

        // 验证前10个交集元素
        System.out.println("\n前10个交集元素示例:");
        intersection.stream().limit(10).forEach(System.out::println);
    }

    /**
     * 使用布隆过滤器找出两个集合的交集
     * @param set1 第一个集合
     * @param set2 第二个集合
     * @return 两个集合的交集
     */
    public static Set<Integer> findIntersection(Set<Integer> set1, Set<Integer> set2) {
        // 创建布隆过滤器,预计插入set1的大小,误判率1%
        //Funnel 是 Guava 提供的一个接口,用于 将对象转换为字节流(PrimitiveSink)
        BloomFilter<Integer> filter = BloomFilter.create(
                Funnels.integerFunnel(),
                set1.size(),
                0.01);

        // 将第一个集合的所有元素添加到布隆过滤器
        for (Integer item : set1) {
            filter.put(item);
        }

        // 检查第二个集合中的哪些元素可能在第一个集合中
        Set<Integer> possibleMatches = new HashSet<>();
        for (Integer item : set2) {
            if (filter.mightContain(item)) {
                possibleMatches.add(item);
            }
        }

        // 由于布隆过滤器可能有假阳性,需要二次验证
        Set<Integer> actualIntersection = new HashSet<>(set1);
        actualIntersection.retainAll(possibleMatches);

        return actualIntersection;
    }

    /**
     * 生成随机整数集合
     * @param size 集合大小
     * @param bound 随机数范围
     * @return 包含随机整数的集合
     */
    private static Set<Integer> generateRandomSet(int size, int bound) {
        Set<Integer> set = new HashSet<>();
        Random random = new Random();
        while (set.size() < size) {
            set.add(random.nextInt(bound));
        }
        return set;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值