
人工智能概论
文章平均质量分 50
海阔平
已识乾坤大
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习浅介
监督学习:训练的数据是有标签,有直接反馈,可用于预测结果,如分类无监督学习:训练的数据是无标签的,无反馈,可用于寻找数据间隐藏的模式,如聚类强化学习:强化学习 RL 同时区别于监督学习和无监督学习,强调如何基于环境行动取得最大化利益,如动态规划。RL的要素主要有策略、值函数、回报信号、环境模型。原创 2023-02-28 00:32:52 · 232 阅读 · 0 评论 -
4.3 人工智能典型岗位的能力要求
4.3 人工智能典型岗位的能力要求智能芯片产业技术人才结构:综合能力:技能能力:专业知识能力:工程实践能力:机器学习产业技术人才结构:综合能力:技能能力:专业知识能力:工程实践能力:深度学习产业技术人才结构:综合能力:技能能力:专业知识能力:工程实践能力:智能语音产业技术人才结构:综合能力:技能能力:专业知识能力:工程实践能力:自然语言处理产业技术人才结构:综合能力:技能能力:专业知识能力:工程实践能力:计算机视觉产业技术人才结构:原创 2022-01-21 14:29:57 · 2712 阅读 · 0 评论 -
4.2 人工智能产业岗位分布
4.2 人工智能产业岗位分布人工智能技术架构自底向上依次为基础层、技术层和应用层人工智能产业人才结构4层金字塔:源头创新人才产业研发人才应用开发人才实用技能人才智能芯片产业技术人才结构:智能芯片架构设计师智能芯片逻辑设计工程师智能芯片物理设计工程师软件系统开发工程师智能芯片验证师机器学习产业技术人才结构:机器学习算法研发工程师机器学习平台研发工程师机器学习系统工程师机器学习架构工程师机器学习开发工程师机器学习实施工程师机器学习测试工程师机器学习建模应用工程原创 2022-01-21 14:23:04 · 2494 阅读 · 0 评论 -
4.1 人工智能的发展趋势
4.1 人工智能的发展趋势自动机器学习的自动化程度与可解释性提升无监督/弱监督学习逐渐成为企业降本增效新利器3D视觉技术助力产业消费升级,淡化虚实边界多模态融合加速AI认知升维人工智能推动数字内容生成向新范式演进边缘计算与人工智能加速融合人工智能内核芯片向类脑神经计算方向演进算法公平性研究推动AI应用走向普惠无偏见隐私保护AI落地使用帮助算法可持续进化人工智能技术向安全智能方向迈进...原创 2022-01-21 12:08:38 · 1277 阅读 · 0 评论 -
3.3 腾讯云AI案例
3.3 腾讯云AI案例内容安全成为产品生产线的挑战图片内容安全色情内容识别:直接涉黄、隐晦涉黄、漫画色情、涉黄物体暴恐内容识别:暴力恐怖人物、枪支刀具标志、暴乱战争广告内容识别:网络小广告、微商商品图片、招嫖广告、二维码植入敏感内容识别:敏感人物、敏感物体、敏感场景违法、违规内容识别:抽烟吸毒、赌博、封建迷信文本内容安全 色情、涉政、暴恐、广告、谩骂、违法、灌水音频内容安全 低俗语音(呻吟、娇喘、ASMR)、民族语言(维语、藏语、阿拉伯语)工业视觉场景 3C、半导体、面板原创 2022-01-21 11:53:28 · 390 阅读 · 0 评论 -
3.2 腾讯云AI解决方案
3.2 腾讯云AI解决方案泛娱乐美颜特效动作互动泛互政务智能办公机器人市民热线一体化智能显示工业良品率分析库存管理支付刷脸支付文旅实时人流量分析拥堵预警教育拍照搜题金融金融核保理赔应用广电人物识别弹幕审核硬件人脸识别终端设备...原创 2022-01-21 11:31:01 · 316 阅读 · 0 评论 -
3.1 腾讯云AI能力矩阵
3.1 腾讯云AI能力矩阵腾讯云AI基本建设AI基础能力:算法 + 工程AI基础平台:机器学习平台 TI-ONE、TI-DataTruthAI应用平台:AI应用服务平台 TI-MatrixAI行业平台:金融、工业、政务、零售、教育、泛互腾讯云AI基础算法能力人脸人体基本能力:基础人脸:人脸检测人脸配准人脸跟踪人脸属性人脸聚类人脸分割人脸优选算法整合人体检测跟踪:人体检测人头检测人体属性人体人头跟踪人流密度估计人体朝向估计人体分割人群事件分析人脸原创 2022-01-21 11:10:48 · 3210 阅读 · 0 评论 -
2.7 对CPU、GPU与云计算服务的依赖
2.7 对CPU、GPU与云计算服务的依赖CPU:central processing unit,中央处理器,擅长处理复杂的逻辑运算与不同的数据类型GPU:graphics processing unit,图形处理器,擅长图形计算与矩阵运算,加速了人工智能的计算速度TPU:专为机器学习定制的芯片NPU:专为物联网人工智能定制的芯片AI项目开发需要云计算的原因:小公司IT运维能力弱降低训练成本云平台可以提供一站式AI开发解决方案云端的AI算力:智能数据分析任务模型训练任务对带宽传原创 2022-01-21 01:15:55 · 581 阅读 · 0 评论 -
2.6 如何使用开源代码仓库
2.6 如何使用开源代码仓库典型的人工智能开源软件特性分析地域特征:美国66%中国13%维护者特性:企业、高校、个人几乎各占1/3时间特性:近年来深度学习快速发展进入爆发期编程语言特性:PYthon、C/C++、Java框架特性:TensorFlow 的用户最多关注度特性:GitHub 是最大的开源项目托管平台,TensorFlow 获得了10万个 starCODING、码云等是国内常见的开源软件托管平台...原创 2022-01-21 01:02:20 · 527 阅读 · 0 评论 -
2.5 机器学习开发框架
2.5 机器学习开发框架机器学习开发框架本质上是一种编程库或者工具,目的是使开发人员更容易、更快速地构建机器学习模型。它封装了大量的可重用代码,涵盖分类、回归、聚类、异常检测等学习方法,有效避免重复造轮子。机器学习框架中用的比较多的是 Scikit-learn深度学习框架中网络的层数越多,可以提取到用于聚类和分类的特征就越复杂。深度学习框架专注于神经网络架构,适用于范围最广的框架是 TensorFlow 和 PyTorch。TensorFlow 是目前最流行的深度学习框架PyTorch 是相当简原创 2022-01-21 00:45:48 · 742 阅读 · 0 评论 -
2.4 人工智能项目开发与验收
2.4 人工智能项目开发与验收模型性能评估与测试分类任务的评价指标:评价指标:评价指标的选择会影响如何比较和测量算法的性能泛化性:从目标领域内的训练数据到任意其他数据上的性能良好准确率:正确分类的样本数展总样本数的比例。但这个指标对不均衡数据而言,模型有可能掉入 ”高精确率陷阱“,如癌症等小概率事件混淆矩阵:真正例、真反例、假正例、假反例(预测为正,实际为反)精确率:所有预测为正中实际为正的比例召回率:所有实际为正中预测为正的比例精确率评估准不准,召回率评估预测全不全模型调优,过拟合原创 2022-01-21 00:19:11 · 1424 阅读 · 0 评论 -
2.3 深度学习开发任务实例
2.3 深度学习开发任务实例神经网络模型的特点:端对端学习,解决了众多非线性映射函数的学习问题机器学习的特征是人工特征抽取学习线性组合,深度学习的特征是从原始特征出发自动学习高级特征组合深度学习的特征提取方法:卷积卷积满足 ”线性性“ 与 ”平移不变性“,卷积神经网络中的 ”卷积运算“ 本质是计算 ”相关性“多隐层的深度神经网络:学习的是神经元中的权重参数深度学习开发实例任务背景:自动驾驶行业近些年来逐渐火爆,计算机视觉在其中起到了非常重要的作用。某公司希望给其生产的玩具车赋予检测交通标志的原创 2022-01-20 23:36:32 · 1980 阅读 · 0 评论 -
2.2 机器学习开发任务实例
2.2 机器学习开发任务实例人工设计特征:在实际应用中,特征往往比模型本身更重要。预处理:如去噪声、去除停用词特征提取:从原始数据中提取一些有效的特征,如在图像分类中提取边缘、尺度不变特征变换特征等特征转化:对特征进行一定的加工,如降维升维机器学习开发实例:任务背景:房产中介公司在进行房屋销售过程中,由于房屋价格各不相同,因此往往需要先对房屋价格给出一个客观的参考价格,以提供给业务员与房东作为参考任务目标:根据已有的房产信息训练模型,预测新的房屋价格任务解析过程:制作数据集、特征工程、原创 2022-01-20 17:47:28 · 1163 阅读 · 0 评论 -
2.1 人工智能项目开发与规划
2.1 人工智能项目开发与规划人工智能项目开发的目标:发现与明确问题技术角度:需要思考AI系统性能能达到预期吗,需要多少数据,能否获取足够的数据,需要多久的时间业务角度:需要解决什么问题,商业目的是什么数据准备重要性:在大部分的人工智能项目中,数据采集与数据清洗占据了79%的工作量训练数据的规模越大,越能带来更好的 AI 模型的性能流程:数据采集:观测数据、人工收集、调查问卷、线上数据库数据清洗:去除缺失、重复、内容错误、不需要的数据数据标注:分类、画框、标注、注释数据划分原创 2022-01-20 17:06:27 · 1347 阅读 · 0 评论 -
1.6 人工智能的基础知识
1.6 人工智能的基础知识人工智能 > 机器学习 > 深度学习机器学习定义:人类基于经验规律给出问题判断,机器通过训练模型给出问题判断目标:以草莓味道判别为例,机器学习就是找到草莓的不同特征维度颜色、尺寸、成熟度等与草莓标签酸、甜之间的映射关系过程:训练得到一个机器学习模型类型:监督(训练数据有标签,概念学习)、无监督(训练数据无标签,归纳学习)、强化学习深度学习深度学习的最主要特征是以神经网络为计算模型与机器学习的区别:特征处理:机器学习:需要可准确识别的由人工提取原创 2022-01-20 16:04:35 · 955 阅读 · 0 评论 -
1.5 人工智能迅速发展的技术领域
1.5 人工智能迅速发展的技术领域计算机视觉主要包括图像分类、图像重建、目标检测、图像搜索、图像分割、目标跟踪人脸识别:解锁手机、解锁门禁、高铁站人脸闸机、疑犯追踪、超市人脸支付、相机人脸自动对焦图像分类:动物保护、医疗诊断、路标检测目标检测:机器人导航、自动驾驶、智能视频监控、工业检测图像分割:语义分割、实例分割、全景分割,应用有医学领域的脑部核磁共振图像与三维重建、遥感领域的定位卫星图像的道路与森林、交通领域的车辆轮廓提取语音技术让机器听懂人话,让机器会说人话语音识别:智能设备的原创 2022-01-20 15:43:39 · 869 阅读 · 0 评论 -
1.4 人工智能发展的成功要素
1.4 人工智能发展的成功要素算法卷积网络→循环网络→生成对抗网络→强化学习AI算法极简史感知器:Rosenblatt 乐观预测感知器 “最终可以学习,做决定,翻译语言”,但《感知器.计算几何简介》一书中指出神经网络需要超大计算量,进入核冬天AI 教父:对脑科学痴迷的 Geoffrey Hinton 一直在研究神经网络,把人工智能作为博士研究方向,与 David Rumelhart 一起解决了线性不可划分的问题,与自己的学生 Yann Lecun 构造出卷积神经网络,用于读取支票上面的手写数字,原创 2022-01-20 15:23:04 · 1001 阅读 · 0 评论 -
1.3 人工智能产业发展
1.3 人工智能产业发展政策:推进 “泛在智能”中国人工智能政策阶段与融资热度:探索阶段:2012~2014第一阶段:2015~2016,夯实技术基础,制定相关标准,市场热度上升第二阶段:2017~2018,上升为国家战略,得到大力发展,市场维持上涨第三阶段:2019~至今,强调与实践深度融合,市场维持上涨人工智能已经成为 “新基建政策” 的一部分需求:智能需求应用场景持续涌现转型需求:人口红利转化为创新红利场景丰富:超大规模且多样的应用场景抗疫加速:疫情等黑天鹅事件催生需求原创 2022-01-20 14:38:54 · 3691 阅读 · 0 评论 -
1.2 人工智能应用
1.2 人工智能应用1.生活中的人工智能指纹识别:指纹采集、指纹评估、提取特征、指纹匹配刷脸解锁:样本采集、图片识别、样本对比活体检测:如动作、读数、光线等2.人工智能技术渗透各行业行业使用率中,金融最高,零售、交通、教育、医疗、制造、健康次之智慧金融:以智能风控为主,智能支付、智能理赔、智能投研、智能投顾次之智慧零售:设计、电商、供应链管理、收益管理、生产制造、线下零售智慧交通:拥堵分析、路线优化、车辆调度、辅助驾驶智慧教育:拍照搜题、陪伴机器人、口语测评、作文批改、虚拟场景展现智慧原创 2022-01-20 14:23:08 · 545 阅读 · 0 评论 -
1.1.人工智能的概念
人工智能:模拟、延伸、扩展人的智能,让机器像人一样进行感知、认知、决策、执行原创 2022-01-20 13:46:18 · 2235 阅读 · 1 评论