矩阵转置ATA^TAT
矩阵转置即将原矩阵的行变成列,原矩阵的列变成行
类比于R语言的转置函数t()的操作
示例1:
已知A=(1234)A=\begin{pmatrix}1&2\\3&4\end{pmatrix}A=(1324),求ATA^TAT?
AT=(1324)A^T=\begin{pmatrix}1&3\\2&4\end{pmatrix}AT=(1234)
示例2:
已知A=(101)A=\begin{pmatrix}1&0&1\end{pmatrix}A=(101),则AT=(101)A^T=\begin{pmatrix}1\\0\\1\end{pmatrix}AT=⎝⎛101⎠⎞,求ATAATA^TAA^TATAAT?
在涉及转置矩阵的乘法中,先用行乘列要比先用列乘行简单
原式
ATAATA^TAA^TATAAT
=(101)∗(101)∗(101)=\begin{pmatrix}1\\0\\1\end{pmatrix}*\begin{pmatrix}1&0&1\end{pmatrix}*\begin{pmatrix}1\\0\\1\end{pmatrix}=⎝⎛101⎠⎞∗(101)∗⎝⎛101⎠⎞
这里先计算A∗ATA*A^TA∗AT,
A∗AT=∗(101)∗(101)A*A^T=*\begin{pmatrix}1&0&1\end{pmatrix}*\begin{pmatrix}1\\0\\1\end{pmatrix}A∗AT=∗(101)∗⎝⎛101⎠⎞
=2=2=2
然后计算AT∗2A^T*2AT∗2
=(101)∗2=(202)=\begin{pmatrix}1\\0\\1\end{pmatrix}*2=\begin{pmatrix}2\\0\\2\end{pmatrix}=⎝⎛101⎠⎞∗2=⎝⎛202⎠⎞
- 性质
(AB)T=BT∗AT(AB)^T=B^T*A^T(AB)T=BT∗AT
∣AT∣=∣A∣|A^T|=|A|∣AT∣=∣A∣
矩阵可逆
对于矩阵A,若满足以下条件则存在可逆矩阵
{Amn,m=n∣A∣≠0 or exist B:AB=E or BA=E\begin{cases}A_{mn},m=n\\|A|\ne0\ or\ exist\ B:AB=E\ or\ BA=E\end{cases}{Amn,m=n∣A∤=0 or exist B:AB=E or BA=E
则称B是A的逆矩阵,A则是可逆矩阵。
例如(1234)\begin{pmatrix}1&2\\3&4\end{pmatrix}(1324),首先该矩阵是22的方阵,∣A∣=−2≠0|A|=-2\ne0∣A∣=−2̸=0,因此该矩阵存在可逆矩阵
已知方阵A满足A2−A−2E=0A^2-A-2E=0A2−A−2E=0,试求A是否可逆。
思路,A首先满足方阵的条件,但是这里无法求出A的行列式的值,因此,我们要构造AB=E的形式。
原式:
A2−A−2E=0⇒A2−A=2E⇒A2−AE=2E⇒A(A−E)=2E⇒A∗A−E2=EA^2-A-2E=0\Rightarrow A^2-A=2E\Rightarrow A^2-AE=2E\Rightarrow A(A-E)=2E\Rightarrow A*\frac{A-E}2=EA2−A−2E=0⇒A2−A=2E⇒A2−AE=2E⇒A(A−E)=2E⇒A∗2A−E=E
令A−E2=B\frac{A-E}2=B2A−E=B,则AB=E,也即存在矩阵B满足AB=E,因此该矩阵可逆。
求逆矩阵A−1A^{-1}A−1
已知矩阵A=(1234)A=\begin{pmatrix}1&2\\3&4\end{pmatrix}A=(1324),求其逆矩阵A−1A^{-1}A−1?
步骤:在待求解矩阵的右边写上同维度的单位矩阵,然后进行相应转化,使得二者交换形式,即把左边的原矩阵转换成单位矩阵,而一起变换的右边的单位矩阵的结果就是原矩阵的逆矩阵
(12⋮1034⋮01)r2-3r1→(12⋮100−2⋮−31)r2 * (-1/2)→\begin{pmatrix}1&2&\vdots1&0\\3&4&\vdots0&1\end{pmatrix}\underrightarrow{\text{r2-3r1}}\begin{pmatrix}1&2&\vdots1&0\\0&-2&\vdots-3&1\end{pmatrix}\underrightarrow{\text{r2 * (-1/2)}}⎝⎛1324⋮1⋮001⎠⎞r2-3r1⎝⎛102−2⋮1⋮−301⎠⎞r2 * (-1/2)
(12⋮1001⋮32−12)r1-2r2→(10⋮−2101⋮32−12)\begin{pmatrix}1&2&\vdots1&0\\0&1&\vdots\frac{3}{2}&-\frac{1}{2}\end{pmatrix}\underrightarrow{\text{r1-2r2}}\begin{pmatrix}1&0&\vdots-2&1\\0&1&\vdots\frac{3}{2}&-\frac{1}{2}\end{pmatrix}⎝⎛1021⋮1⋮230−21⎠⎞r1-2r2⎝⎛1001⋮−2⋮231−21⎠⎞
至此,右边的矩阵(−2132−12)\begin{pmatrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{pmatrix}(−2231−21),就是原矩阵的逆矩阵
逆矩阵的性质
A∗A−1=E=A−1∗AA*A^{-1}=E=A^{-1}*AA∗A−1=E=A−1∗A
即矩阵乘其逆矩阵,或者逆矩阵乘其原矩阵都是单位矩阵E
伴随矩阵的性质
AA∗=∣A∣E=A∗AAA^*=|A|E=A^*AAA∗=∣A∣E=A∗A
A∗A^*A∗叫做矩阵A的伴随矩阵
矩阵的秩R(A)
对矩阵进行行变换,保证下一行的0比上一行多,直到全为0为止,最后看包含非0行的个数,有几行矩阵的秩就是多少
示例:
求A=(1234)A=\begin{pmatrix}1&2\\3&4\end{pmatrix}A=(1324)的秩R(A)?
原式:
A=(1234)r2-3r1→(120−2)A=\begin{pmatrix}1&2\\3&4\end{pmatrix}\underrightarrow{\text{r2-3r1}}\begin{pmatrix}1&2\\0&-2\end{pmatrix}A=(1324)r2-3r1(102−2)
因此,该矩阵的秩是2,即R(A)=2R(A)=2R(A)=2