- 博客(244)
- 收藏
- 关注
原创 OpenManus代码库中ReAct使用机制深度分析
OpenManus是一个基于ReAct(Reasoning and Acting)模式的智能体系统,通过结合推理(Reasoning)和行动(Acting)来实现复杂任务的自动化执行。本文档将深入分析代码库中ReAct模式的实现机制、架构设计、核心组件以及实际应用场景。IDLE = "IDLE" # 空闲状态RUNNING = "RUNNING" # 运行状态FINISHED = "FINISHED" # 完成状态ERROR = "ERROR" # 错误状态。
2025-07-19 09:20:43
303
原创 OpenManus工具和规划部分的Prompt管理机制深度分析
各 agent 定义自己的 system prompt 和 next step prompt(多为字符串模板)。工具通过to_param()方法生成标准描述。agent 在决策时,将 prompt、历史消息、工具描述一起传递给 LLM。LLM 基于这些 prompt 生成调用工具的指令。工具的 Prompt 主要是各 agent 的 system prompt(在下定义)+ 工具自身的描述(通过to_param()生成)。
2025-07-19 09:03:42
381
原创 OpenManus工具调用和管理机制深度分析
OpenManus的工具调用与管理机制,兼顾了标准化、灵活性与可扩展性,是多智能体系统中值得借鉴的架构范式。未来可进一步加强工具生态、异常链路、分布式协作等能力,持续提升系统智能与稳定性。
2025-07-18 13:22:14
371
原创 PaperBench:评估AI复现顶尖AI研究的能力——开启AI自主科研新纪元的关键一步
PaperBench并非只是一个简单的测试工具,它是一个全面而严苛的评估体系,其核心目标是衡量AI代理从零开始复现顶尖AI研究的能力。具体来说,AI代理需要完成一系列高难度任务:深入理解论文的核心贡献、独立开发完整的代码库、成功执行所有实验并复现结果。该基准测试包含了20篇来自2024年国际机器学习大会(ICML)的Spotlight和Oral论文,这些论文涵盖了12个不同的ICML主题,包括深度强化学习、鲁棒性和概率方法等当前人工智能领域的研究热点。
2025-07-18 12:59:37
303
原创 DSBench:数据科学智能体离专家还有多远?——首个超真实数据科学能力基准揭秘
DSBench的发布标志着数据科学AI评估进入了新阶段——从抽象的代码生成转向真实场景的问题解决。这个基准测试不仅揭示了当前技术的局限性,更为未来发展提供了清晰的路标。当我们看到GPT-4o在简单任务中流畅生成Pandas代码,却在多步骤推理中频频失误时,就能理解数据科学智能体的发展还需要突破多个瓶颈。但正是这些挑战,推动着AI从实验室走向真实业务——或许在不久的将来,当智能体在DSBench上的正确率突破80%时,我们就能真正迎来数据科学家的AI助手时代。
2025-07-18 09:41:05
532
原创 ChatGPT Agent:OpenAI掀起AI生产力革命,让AI从对话走向自主行动
ChatGPT Agent最革命性的突破,在于其实现了从"问答工具"到"任务执行者"的身份转变。不同于传统AI助手需要用户分步引导,这款新工具能够理解复杂指令并独立制定执行方案,通过自带的虚拟计算机完成全流程操作。想象这样一个场景:当你发出"分析三家竞争对手并制作演示文稿"的指令后,ChatGPT Agent会自动启动浏览器访问企业官网、行业数据库和新闻平台,筛选关键信息;接着调用终端运行数据分析代码,提取市场份额、产品差异等核心指标;
2025-07-18 09:14:43
681
原创 OpenManus智能体浏览器使用机制深度分析
OpenManus智能体系统实现了一套完整的浏览器自动化机制,通过类为核心,结合智能体和相关的配置管理,为AI智能体提供了强大的网页浏览、交互和内容提取能力。该系统基于库构建,支持多种浏览器操作,包括导航、元素交互、内容提取、标签页管理等核心功能。OpenManus智能体浏览器使用机制是一个设计精良、功能完整的浏览器自动化系统。通过模块化架构、异步处理、智能决策和丰富的功能特性,该系统能够满足各种复杂的网页自动化需求。其强大的扩展性、可配置性和稳定性使其成为AI智能体进行网页交互的理想工具。
2025-07-18 08:49:08
542
原创 abs库 3)定义和实现抽象类
在掌握了 abc 模块的基本语法之后,本章将聚焦于如何,并结合实际应用场景,演示抽象方法的实现方式、使用抽象类构建类层次结构的技巧,以及如何在抽象类中提供默认实现。
2025-07-18 08:46:45
198
原创 abc库 2)abc模块基础
ABCABCMeta是最常用的抽象标记器,用于指定某方法为必须被实现。pass如果我们尝试直接实例化Vehicle或创建未实现drive()如果你希望子类必须实现某个属性,可以结合使用@property和。@propertypass@property不遵循该结构会抛出TypeError。
2025-07-18 08:44:26
260
原创 abc库 1)抽象基类概述
抽象基类是一种不能被直接实例化的类,目的是作为“模板”供其他子类继承。它定义了一组必须在子类中实现的方法或属性。抽象基类通常用于设计接口(interface)或基础行为的框架,确保所有子类都遵循同一个 API 规范。pass上例中,Animal类是一个抽象基类,speak()是一个抽象方法。任何继承Animal的类,都必须实现speak()方法,否则就不能实例化。请你定义一个抽象基类Shape,要求所有子类都必须实现一个area()方法。然后创建一个Circle类,实现该方法。
2025-07-18 08:40:27
228
原创 OpenManus智能体的文本处理机制深度解析
OpenManus的文本处理机制以为核心,兼顾了通用性、安全性、可追溯性和易用性。其抽象的文件操作接口、灵活的沙箱机制、严谨的参数校验和丰富的命令支持,为智能体系统提供了坚实的文本处理基础。未来,随着多智能体协作、自动化编程和智能文档处理需求的提升,OpenManus的文本处理机制有望进一步扩展,支持更复杂的编辑场景、更高效的协作模式以及更智能的内容理解与生成能力。
2025-07-17 21:48:10
512
原创 OpenManus 工作流程管理机制分析
自动总结:全部步骤完成后,自动调用 LLM 生成总结报告,归纳任务成果与后续建议。多方式总结:若 LLM 总结失败,可回退到 agent 生成总结,保证流程闭环。计划可视化:支持将计划以文本、进度条等多种方式展示,便于用户全局把控。OpenManus 的智能体规划机制以 LLM+工具链为核心,自动完成任务分解、步骤规划、智能体分配与流程控制,支持多 agent 协作与灵活的异常处理,具备高度可扩展性与可追溯性,适合复杂任务的自动化执行与管理。
2025-07-17 20:54:59
397
原创 OpenManus 整体架构,核心模块与典型例子
OpenManus 是一个面向未来的开源多智能体(Multi-Agent)大语言模型(LLM)智能体系统。它不仅仅是一个简单的“AI助手”框架,更是一个高度模块化、可扩展、支持多协议、多工具、多智能体协作的智能体平台。其设计初衷是让开发者、研究者和企业能够以极低的门槛,快速搭建和扩展属于自己的智能体系统,满足从自动化办公、数据分析、自动编程、信息检索、网页自动化到复杂多阶段任务协作等多样化需求。
2025-07-17 15:53:07
536
原创 Agentic Reasoning:让大模型拥有「工具协作脑」的突破性框架
Agentic Reasoning框架的成功证明了一个重要趋势:下一代AI系统将不再是孤立的大模型,而是能够像人类专家一样灵活运用各种工具的「认知增强型」智能体。通过将大模型的推理能力与专门工具的精准能力相结合,我们不仅能够突破现有AI的性能瓶颈,还能实现更可靠、更透明、更高效的智能系统。从论文展示的医疗案例中可以看到,这种框架已经能够为复杂的临床决策提供有价值的支持;在深度研究任务中,它能够大幅提高知识生产的效率和质量。
2025-07-17 14:43:08
662
原创 强化学习在自然语言处理中的突破:从理论到实践的全面探索
论文名称:IS REINFORCEMENT LEARNING (NOT) FOR NATURAL LANGUAGE PROCESSING: BENCHMARKS, BASELINES, AND BUILDING BLOCKS FOR NATURAL LANGUAGE POLICY OPTIMIZATION论文地址:https://arxiv.org/pdf/2210.01241自然语言处理(NLP)领域正经历着一场方法论的革新。
2025-07-17 13:59:16
669
原创 R1-Searcher:用强化学习解锁大模型的自主搜索能力——重新定义检索增强生成技术
论文名称:R1-Searcher: Incentivizing the Search Capability in论文地址:https://arxiv.org/pdf/2503.05592在人工智能领域,大语言模型(LLMs)的推理能力一直是研究的焦点。从数学解题到代码编写,这些模型展现出了令人惊叹的进步。然而,当面对时效性强或知识密集型问题时,仅仅依赖内部知识的大模型往往力不从心,容易产生错误甚至幻觉。
2025-07-16 15:23:16
586
原创 Pytest 2) Pytest 基础语法与使用
Pytest 通过约定大于配置的方式自动发现测试代码。test_*.pytest_函数名()test_方法名()
2025-07-16 13:09:58
259
原创 SWE-agent 智能体接口机制解析
fill:#333;color:#333;color:#333;fill:none;模型输出 edit 命令ToolHandler 解析 actionhandle_action 执行 actionSWEEnv 调用 edit 工具edit 工具修改文件输出 observationAgent 记录并决定下一步fill:#333;color:#333;color:#333;fill:none;模型输出阅读命令ToolHandler 解析 actionhandle_action 执行命令。
2025-07-16 11:50:51
917
原创 突破领域壁垒:OWL框架如何重塑多智能体系统的通用性与效率
WORKFORCE框架与OWL训练方法通过模块化设计与规划器优化,打破了多智能体系统的领域壁垒,实现了"稳定核心+可变外围"的高效迁移模式。其开源特性(代码、模型和数据完全公开)为学术界和工业界提供了可复用的基础架构,有望加速通用人工智能助手的发展。从自动化办公到复杂决策支持,这一研究成果为AI技术在真实世界的规模化应用铺平了道路。当多智能体系统能够像人类组织一样灵活协作、跨领域适应时,通用人工智能的愿景正逐步从概念走向现实。
2025-07-16 08:58:33
1426
原创 OpenResearcher:用AI加速科学研究的开源利器
OpenResearcher作为一个主动的AI助手,旨在加速研究过程,满足研究者广泛的查询需求。它采用检索增强生成(RAG)技术,为LLMs增添最新、经过验证的特定领域知识,与用户互动以澄清他们的查询,还开发了多种工具来理解研究者的查询、从科学文献中搜索、过滤检索到的信息、提供准确全面的答案并优化这些答案。通过灵活使用这些工具,OpenResearcher能够构建一个提供准确全面答案的流程,如人类和GPT-4o的评估所示,其性能优于行业应用。
2025-07-16 07:46:34
556
原创 Pydantic 3)字段定义与配置
在 Pydantic v1 中,我们使用来配置模型行为;而在 Pydantic v2 中,这个方式被替换为类属性,语义更清晰。用户名必须为 3~20 字母或数字组成;密码长度为 8~32;邮箱为合法格式;接受外部字段名userNameuserEmail,但内部统一为username和email;禁止额外字段;严格类型校验。
2025-07-14 15:11:19
681
原创 Pydantic 2)第一个 Pydantic 模型
在 Pydantic 中,所有的数据模型都继承自BaseModel。id: intname: str它自动根据你提供的字段进行类型检查。它还能自动填充默认值(它知道如何将自己变成 JSON 或 Python 字典。
2025-07-14 15:02:57
271
原创 Pydantic 1)简介与安装
Pydantic是一个基于 Python 类型注解的数据验证与数据解析库,它通过标准的类型标注自动执行类型转换、数据校验以及结构序列化/反序列化,非常适用于现代 Python 应用中处理用户输入、配置管理和数据建模的场景。你可以把 Pydantic 想象成 Python 世界里的 “类型守门员”,它会在你处理 JSON、表单、配置文件或数据库数据之前,把所有字段过一遍筛子,确保它们“长得对、活得对、说得对”。它最早因在FastAPI。
2025-07-14 15:00:14
251
原创 LLM4SR:大型语言模型如何重塑科学研究全流程?
论文名称:LLM4SR: A Survey on Large Language Models for Scientific Research论文地址:https://arxiv.org/pdf/2501.04306v1当牛顿说出“站在巨人的肩膀上”时,他或许未曾想过,300多年后的今天,“巨人”的角色会部分由人工智能承担。近年来,大型语言模型(LLMs)的爆发式发展正在为科学研究注入前所未有的活力,从假设提出到论文评审的全流程都留下了它们的印记。
2025-07-14 09:11:21
1059
原创 大型语言模型在自动化AI科学研究与论文撰写中的应用与展望
LLM能够快速总结复杂科学信息,生成摘要和引言概述。然而,需要注意的是,LLM在总结科学文本时可能省略关键细节,导致结论过度概括,超出原始研究的范围。
2025-07-14 09:06:37
475
原创 用LLM做论文实验:从“爆肝调参”到“躺平收结果”的终极指南
LLM可能生成错误代码(比如调用不存在的库函数),需要你检查它的“创新”可能是重复已有研究,要自己查文献验证论文的核心思想、结论解读还得靠你自己但不可否认,LLM能帮你把“调参到凌晨”“拆模型拆到崩溃”这些机械工作自动化,让你有更多时间思考“研究的真正价值”。祝大家都能靠LLM省出时间,多发顶会~ 有问题评论区见!
2025-07-13 20:50:33
481
原创 让LLM帮你写论文:一场与AI的奇幻冒险
你是否经历过这样的场景:论文截止日期只剩三天,而你对着空白的Word文档发呆,大脑一片空白?或者,你已经收集了堆积如山的资料,但却不知道如何组织成一篇逻辑清晰的论文?别担心,在这个AI时代,我们有了一个强大的盟友——大型语言模型(LLM)!今天,就让我们一起开启一场轻松幽默的奇幻冒险,探索如何让LLM帮你写论文。通过以上的介绍,我们可以看到,LLM在论文写作中可以发挥很大的作用,它可以帮助我们收集资料、组织思路、撰写初稿、优化内容等。但是,我们也要清楚地认识到,AI只是我们的助手,而不是替代者。
2025-07-13 20:21:55
654
原创 别再跟论文捉迷藏啦!LLM 带你轻松搞定文献检索与整理
怎么样,是不是觉得瞬间解放了?有了 LLM 这个好帮手,再加上 Semantic Scholar 和 OpenAlex 这两个 “文献神器”,文献检索和整理再也不是苦差事。你可以把节省下来的时间用在更有价值的研究思考上,赶紧试试吧!如果在使用过程中发现了什么新的技巧,或者有什么疑问,欢迎在评论区分享交流哦!
2025-07-13 17:22:28
737
原创 别让智能体 “吵架”!多智能体系统的 Prompt 设计指南
给多智能体写 Prompt,真不用搞得像写博士论文。你看那些大神们的系统,核心 Prompt 往往简单得不像话 —— 因为他们把功夫花在了 “理清关系”“做好分工”“测试到位” 上。记住这四步口诀,保你少走 90% 的弯路:画张关系图(知道谁跟谁咋干活)分清死规矩和活变化(别让智能体精神分裂)用模板省力气(面包片提前烤好)多测试防翻车(拷问到底才放心)试一次你就知道,当智能体们像训练有素的篮球队员一样,一个传球一个投篮配合无间时,那种成就感,比打赢《王者荣耀》王者局还爽。
2025-07-13 14:51:00
617
原创 OpenVLA:开源视觉-语言-动作模型的突破性进展
OpenVLA的提出标志着机器人学向“开源基础模型”时代迈进了关键一步。性能突破:以70亿参数超越550亿参数的闭源模型,证明高效架构设计的价值。泛化能力:通过多样化数据和融合视觉编码器,实现跨机器人、跨场景的零样本控制。可访问性:LoRA微调与量化技术使模型能在消费级硬件上部署,降低应用门槛。开源生态:完整工具链推动社区协作,加速通用机器人政策的研究与应用。未来,随着更多研究者参与优化,OpenVLA有望成为机器人操纵领域的基准模型,推动家庭服务、工业自动化等场景中通用机器人的普及。
2025-07-13 13:35:10
983
原创 CoSearchAgent:用大语言模型重塑协作搜索,让团队信息获取更高效
答案生成(Retrieval-Augmented Generation)以重写后的查询和提取的引用为输入,LLMs将分散的信息整合成连贯答案。例如,针对“2型糖尿病治疗”,系统会综合多个来源的信息,总结出“目前尚无根治方法,健康饮食和运动是控制血糖的首要措施,常用药物包括双胍类、磺脲类等”。引用标注答案中的每个片段都对应至少一个引用来源(如“[1][3]”),用户可通过点击链接追溯原始信息,确保答案的可信度。这一功能特别适合团队快速获取核心结论,减少逐一阅读搜索结果的时间成本。
2025-07-13 09:38:55
527
原创 LLM多智能体系统AI Scientist v2 论文搜索机制分析
SemanticScholarSearchTool是AI科学家系统中用于学术论文搜索的核心工具,继承自BaseTool抽象基类。该工具通过Semantic Scholar API为AI科学家提供文献检索能力,支持研究过程中的文献调研和引用收集。AI科学家在生成研究想法时进行文献调研论文写作过程中收集相关引用验证研究提案的创新性和可行性构建文献综述和背景介绍。
2025-07-13 09:27:44
228
原创 LLM多智能体系统AI Scientist v2 IDEA生成机制分析
是AI科学家系统中的核心组件,负责生成高质量的研究提案。该系统采用了一种无模板的、基于反思的迭代方法来生成研究想法,结合了文献搜索和智能反思机制。实现了一个智能的研究提案生成系统,通过结合LLM的创造力、文献搜索的准确性以及迭代反思的改进机制,能够生成高质量、新颖且可行的研究想法。该系统特别适合学术研究环境,能够帮助研究人员快速生成符合顶级会议标准的研究提案。
2025-07-13 08:18:51
244
原创 LLM多智能体系统AI Scientist v2 框架整体架构分析
AI科学家系统是一个基于大语言模型的自动化科学研究平台,能够自主进行实验设计、代码实现、结果分析和论文撰写。系统采用树搜索算法和并行代理架构,支持多阶段实验流程管理。
2025-07-13 07:56:06
229
原创 AI Scientist v2 整体架构分析
AI科学家系统是一个基于大语言模型的自动化科学研究平台,能够自主进行实验设计、代码实现、结果分析和论文撰写。系统采用树搜索算法和并行代理架构,支持多阶段实验流程管理。
2025-07-12 19:54:41
304
原创 AI科学家的里程碑:首篇全AI生成论文通过同行评审,开启科研自动化新纪元
论文名称:The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search下载地址:https://arxiv.org/pdf/2504.08066当人工智能开始自主设计实验、分析数据并撰写科研论文,甚至通过严苛的同行评审时,我们是否正见证一场科学研究范式的革命?
2025-07-12 18:55:48
818
原创 AI Scientist Prompt撰写规律
通用模式专业模式计算化学: “You are an ambitious PhD student, who works on applying machine learned potentials in computation chemistry/material design…”
2025-07-12 18:40:34
398
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人