目录
Python实现t-分布随机邻域嵌入(t-SNE)降维算法的博客
引言
在数据科学和机器学习中,降维技术是用于降低数据维度并且保留重要特征的关键方法。当我们处理高维数据时,常规的线性降维方法如PCA(主成分分析)可能不足以捕捉数据的非线性结构。为此,t-分布随机邻域嵌入(t-SNE)算法作为一种强大的非线性降维工具,被广泛用于高维数据的可视化和聚类分析。本文将详细介绍t-SNE算法的原理,并使用Python进行实现。我们将通过一个具体的场景来展示如何使用t-SNE算法实现降维。
t-SNE算法原理
t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种非线性降维算法,旨在将高维数据映射到低维空间(通常是二维或三维),以便进行数据可视化。t-SNE通过保留高维空间中数据点的局部邻域结构,使得降维后的数据点在低维空间中保持相似的局部关系。t-SNE算法的核心思想可以分为以下几步:
-
高维空间中的相似度计算:
t-SNE首先在高维空间中计算数据点之间的相似度。具体而言,给定两个数据点 x i x_i xi和 x j x_j xj,其在高维空间中的相似度由条件概率 p j ∣ i p_{j|i} pj∣i表示。这个概率反映了在高维空间中选择点 x j x_j xj作为点 x i x_i xi邻居的概率。t-SNE假设高维数据分布遵循高斯分布,并通过高斯核函数计算条件概率:
p j ∣ i = exp ( − ∥ x i − x j ∥ 2 / 2 σ i 2 ) ∑ k ≠ i exp ( − ∥ x i − x k ∥ 2 / 2 σ i 2 ) p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} pj∣i=∑k=iexp(−∥xi−xk∥2/2σi2)exp(−∥xi