RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型

一、本文介绍

本文记录的是基于 GhostNetV3 的 RT-DETR轻量化改进方法研究GhostNetV3的轻量模块采用重参数化方法,训练时为深度可分离卷积1×1卷积添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现RT-DETR的轻量化改进。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### 轻量化 RT-DETR 模型的特点 轻量化 RT-DETR 模型旨在保持原有模型高性能的同时减少计算资源消耗,使得该模型能够在边缘设备或移动平台上高效运行。通过紧凑反转块(CIB)结合 RepC3 的二次创新,这种结构不仅增强了特征表达能力还降低了复杂度[^4]。 ### 实现方法 #### 特征提取网络简化 为了减轻模型负担并加速推断过程,采用了更为简洁有效的骨干网架构替代原有的深层卷积神经网络。具体来说: 1. **引入 CIB 结构**:此模块融合了深度可分离卷积与标准卷积的优点,在保证效果的前提下极大地压缩了参数规模。 2. **调整通道数量**:适当缩减各层输出的通道数目,从而进一步降低运算量而不明显影响最终性能。 ```python import torch.nn as nn class CompactInvertedBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, groups=in_channels), nn.BatchNorm2d(in_channels), nn.ReLU(), nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1) ) def forward(self, x): return self.conv(x) ``` #### 双标签分配策略 不同于传统的单标签或多标签方式,这里提出了基于一致性测量的一对多正样本标记方案。这有助于提高训练稳定性以及泛化能力,同时避免了 NMS 后处理带来的额外成本。 ### 应用场景 轻量化后的 RT-DETR 更适合应用于那些对于实时性和硬件兼容性有着较高要求的任务当中,比如但不限于: - 自动驾驶车辆中的障碍物识别; - 安防监控系统的入侵检测; - 工业生产线上的产品质量检验; 这些领域往往需要快速响应且受限于较低端处理器的支持情况,因此采用经过优化精简过的检测器显得尤为重要[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值