一、本文介绍
本文记录的是利用LEGM
模块优化YOLOv11
的目标检测网络模型。
LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究LEGM
的原理,并将其应用到YOLOv11
中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进