YOLOv11改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务

一、本文介绍

本文记录的是利用LEGM 模块优化YOLOv11的目标检测网络模型

LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究LEGM 的原理,并将其应用到YOLOv11中,通过融合局部与全局特征、引入深度信息,增强特征表示能力


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值