一、本文介绍
本文记录的是利用 SFA 空间 - 频率注意力(Spatial-Frequency Attention)和 CTA 通道转置注意力(Channel Transposed Attention)模块优化 YOLOv13 的目标检测网络模型。
SFA
和CTA
源自图像超分辨率领域的FreqFormer
模型,前者结合高频和通道信息到自注意力中,后者从通道维度进行自注意力计算,二者结合能够有效处理复杂的图像信息。本文将其应用到YOLOv13
中,并进行DSC3k2的二次创新
,使网络能够综合空间、频率和通道等多种维度信息,更好地突出重要特征,从而提升对不同尺度目标和不规则形状目标的特征提取能力。
文章目录
二、FreqFormer模块介绍
FreqFormer: Frequency-aware Transformer for Lightweight Image Super-resolution
在F