YOLOv11改进策略【Neck】| 适用关键点检测:PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系

一、本文介绍

本文记录的是利用PSFM 模块改进 YOLOv11 的颈部融合部分,专门用于关键点检测

PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到YOLOv11的颈部部分,融合深层与浅层特征捕捉长距离语义关联增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值