Pytorch快速入门系列---(十四)搭建卷积自编码对图像去噪

本文介绍了使用Pytorch构建卷积自编码网络进行图像去噪的方法,详细阐述了数据准备、网络搭建及训练过程。通过STL10数据集,网络在去噪图像的同时保留了细节,训练结果显示损失函数稳定收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇文章介绍基于卷积层的自编码去噪网络。利用卷积层进行图像的编码和解码,是因为卷积操作在提取图像的信息上有较好的效果,而且可以对图像中隐藏的空间信息等内容进行较好的提取。该网络可用于图像去噪、分割等。

在基于卷积的自编码图像去噪网络中,其作用过程如下图所示。在网络中输入图像带有噪声,而输出图像则为去噪的原始图像,在编码器阶段,会经过多个卷积、池化、激活层和BatchNorm层等操作,逐渐降低每个特征映射的尺寸,如将每个特征映射编码的尺寸降低到24×24,即图像的大小缩为原来的1/16;而特征映射编码的解码阶段,则可以通过多个转置卷积、激活层和BatchNorm层等操作,逐渐将其解码为原始图像的大小并且包含3个通道的图像,即96×96的RGB图像。

 1.去噪自编码网络数据准备

先简单介绍一下训练网络使用到的图像数据集——STL10,该数据集可以通过torchvision.datasets模块中的STL10()函数进行下载,该数据集共包含三种类型数据,分别是带有标签的训练集和验证集,分别包含5000张和8000张图像,共有10类数据,还有一个类型包含10万张的无标签图像,均是96×96的RGB图像,可用于无监督学习。虽然使用STL10()函数可直接下载该数据集,但数据大小仅约2.5GB,且下载的数据是二进制数据,故建议直接到

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值