Python3入门机器学习
3.6 最好的衡量线性回归法的指标:R Squared
1.R Squared:
关于R^2的结论:
- R^2 <= 1;
- R^2越大越好。
当我们的预测模型不犯任何错误时,R^2得到最大值1(分子为0)。 - 当我们的模型等于基准模型时,R^2为0。
- 如果R^2 < 0,说明我们学习到的模型还不如基准模型。此时,很有可能我们的数据不存在任何线性关系。
2.R Squared的具体实现:
尝试着自己封装:
def r2_score(y_true, y_predict):
"""计算y_true和y_predict之间的R Squared"""
return 1 - mean_squared_error(y_true, y_predict) / np.var(y_true)
调用自己封装的代码:
3.使用scikit-learn中的R Squared: