Python3入门机器学习之3.6最好的衡量线性回归法的指标:R Squared

本文深入讲解了RSquared作为衡量线性回归模型优劣的重要指标,包括其定义、计算方法及如何通过自定义函数和scikit-learn库进行实现。RSquared值越接近1,表示模型拟合效果越好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python3入门机器学习

3.6 最好的衡量线性回归法的指标:R Squared

1.R Squared
在这里插入图片描述
在这里插入图片描述
关于R^2的结论:

  • R^2 <= 1;
  • R^2越大越好。
    当我们的预测模型不犯任何错误时,R^2得到最大值1(分子为0)。
  • 当我们的模型等于基准模型时,R^2为0。
  • 如果R^2 < 0,说明我们学习到的模型还不如基准模型。此时,很有可能我们的数据不存在任何线性关系。

在这里插入图片描述
2.R Squared的具体实现
在这里插入图片描述
尝试着自己封装:

def r2_score(y_true, y_predict):
    """计算y_true和y_predict之间的R Squared"""

    return 1 - mean_squared_error(y_true, y_predict) / np.var(y_true)

调用自己封装的代码:
在这里插入图片描述
3.使用scikit-learn中的R Squared
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值