基于 Triton Inference Server 的算法服务

如何将算法部署在 Triton Inference Server

基于Python后端的基础模型 (基础示例)

编写配置 config.pbtxt

以目标检测为例
定义输入输出: 参数名, 参数类型, 参数维度

name: "object_detect" # 模型名称, 与当前目录文件名一致
backend: "python" # 推理后端类型
max_batch_size: 1 # 最大批次
input [
  {
   
   
    name: "image" 
    data_type: TYPE_UINT8
    dims: [-1,-1,3 ] # -1代表动态大小
  },
  {
   
   
    name: "score" 
    data_type: TYPE_FP32
    dims: [1]
    optional: true # optional 为 true 时, 该参数为可选参数, 默认为 false
  }
]
output [
  {
   
   
    name: "labels"
    data_type: TYPE_STRING
    dims: [-1,-1]
  },
  {
   
   
    name: "classes"
    data_type: TYPE_UINT16
    dims: [-1]
  },
  {
   
   
    name: "scores"
    data_type: TYPE_FP32
    dims: [ -1 ]
  },
  {
   
   
    name: "bboxes"
    data_type: TYPE_UINT32
    dims: [-1, 4 ]
  }
]

编写model.py

需要实现 TritonPythonModel 类的成员函数: initialize , execute, finalize

initialize

initialize函数在加载模型时只会调用一次。
实现initialize函数是可选的。该函数允许模型初始化与此模型关联的任何状态。

参数

args : dict
键和值都是字符串。字典的键和值包括:

  • model_config:包含模型配置的JSON字符串
  • model_instance_kind:包含模型实例类型的字符串
  • model_instance_device_id:包含模型实例设备ID的字符串
  • model_repository:模型存储库路径
  • model_version:模型版本
  • model_name:模型名称
execute

每个Python模型必须实现execute函数。execute函数接收一个pb_utils.InferenceReques

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值