- 博客(6239)
- 资源 (2)
- 收藏
- 关注

原创 【荐读IEEE TPAMI】基于模型的强化学习与独立想象力
在基于视觉的交互系统中,世界模型学习行动的后果。然而,在实际场景中,如自动驾驶,存在不可控制的动态,这些动态独立于或与行动信号稀疏相关,这使得学习有效的世界模型变得具有挑战性。为了解决这个问题,我们提出了Iso-Dream++,这是一种基于模型的强化学习方法,具有两个主要贡献。首先,我们优化了逆动力学,鼓励世界模型从环境混合的时空变化中隔离出可控制的状态转换。其次,我们基于解耦的潜在想象进行策略优化,我们将不可控制的状态滚动到未来,并将其与当前可控制的状态自适应地关联起来。
2024-05-18 19:15:00
1252

原创 【荐读IEEE TPAMI】无监督去雨:非对称对比学习与自相似性相遇
大多数现有的基于学习的去雨方法都是在合成的雨-清洁对上进行有监督训练的。合成雨与真实雨之间的领域差距使它们在复杂的真实雨场景中的泛化能力降低。此外,现有方法主要独立利用图像或雨层的属性,很少有方法考虑它们之间的相互排斥关系。为了解决这一困境,我们探索了每层内部的内在自相似性以及两层之间的相互排斥性,并提出了一种无监督的非局部对比学习(NLCL)去雨方法。非局部自相似性图像块作为正样本被紧密地拉在一起,而雨块作为负样本则被显著地推开,反之亦然。
2024-05-13 12:24:06
1063
原创 AAAI‘24 | 基于区域解缠扩散模型的高保真光电容积脉搏波到心电图转换
本文提出了一种新型区域解缠扩散模型(RDDM),用于实现从光电容积脉搏波(PPG)到心电图(ECG)的高保真转换。针对传统扩散模型在生物信号转换中的局限性,RDDM创新性地将扩散过程解缠为两部分:全局时间结构学习和局部细节捕捉。模型通过选择性添加噪声和ROI引导机制,仅需10步采样即可生成高质量ECG信号。为全面评估生成信号的质量,作者建立了包含5项心脏相关任务的CardioBench评估基准。实验表明,RDDM在标准指标和心脏疾病检测任务上均优于现有方法,为连续心脏监测提供了新思路。
2025-07-14 09:30:00
6
原创 TMI 2025 | 基于区域感知的特征对齐互注意力融合网络FAMF-Net用于不平衡数据下的乳腺癌诊断
多模态超声图像中乳腺癌的自动准确分类对于提高患者的诊疗效果和节省医疗资源至关重要。从方法学角度来看,多模态超声图像的融合常面临诸如特征错位、互补信息利用有限、特征融合中可解释性差以及样本类别不平衡等挑战。为解决这些问题,作者提出了一种特征对齐互注意力融合方法(FAMF-Net),该方法由区域感知对齐(RAA)模块、互注意力融合(MAF)模块以及基于强化学习的动态优化策略(RDO)组成。具体而言,RAA通过类激活映射实现区域感知,并执行平移变换以实现特征对齐。
2025-07-14 09:30:00
4
原创 CVPR 2025 | 基于选择性状态空间模型的高效注意力Mamba轨迹预测模型
运动预测在自动驾驶中至关重要,它能基于历史输入准确预测未来车辆轨迹。本文介绍了Trajectory Mamba,这是一种基于选择性状态空间模型(SSM)的新型高效轨迹预测框架。传统的基于注意力的模型面临着计算成本随目标数量呈二次增长的挑战,这阻碍了它们在高动态环境中的应用。对此,作者利用状态空间模型重新设计了编码器 - 解码器架构中的自注意力机制,从而实现线性时间复杂度。
2025-07-14 09:30:00
5
原创 TCSVT 2024 | 基于频率融合的Transformer视觉目标跟踪
由于具有全局建模能力,Transformer在视觉跟踪领域取得了显著进展,这使它们能够学习低频特征(即高级语义信息)。然而,它似乎忽略了高频特征(即低级纹理和边缘信息),而这些特征对于在跟踪任务中识别不同的类内目标实例至关重要。为解决这一问题,作者从频率融合的角度出发,提出了一种基于Transformer的跟踪器,研究了是否可以有效地结合高频和低频特征以实现鲁棒跟踪。具体来说,作者设计了一种简单而有效的两阶段融合策略,并在每个阶段的跟踪过程中使用适当的频率融合策略,以充分利用频域信息。
2025-07-14 09:30:00
3
原创 TPAMI 2025 | 无校准的基于细粒度噪声估计的RAW图像去噪
由于高效深度去噪器的发展,图像去噪取得了显著进展。为了提升在实际场景中的性能,近期趋势倾向于构建更优的噪声模型以生成逼真的训练数据,或估计噪声水平来引导非盲去噪器。在本文中,作者通过提出一种创新的噪声估计和逼真噪声合成流程,将这两种策略结合起来。具体而言,作者整合了精细的统计噪声模型和对比学习策略,并采用独特的数据增强方法来提升学习能力。然后,作者使用该模型在评估数据集上估计噪声参数,随后利用这些参数构建特定相机的噪声分布并合成逼真的噪声。
2025-07-14 09:30:00
2
原创 ICCV 2025 | 无需样本也能行!DuET 框架横空出世,双增量目标检测实现类 - 域联合迁移
想象一下,在自动驾驶的场景里,汽车需要在各种复杂的天气和光照条件下,不断识别新出现的道路标志,同时不能忘记之前已经学习过的信息;或者在监控系统中,要实时适应环境的变化,准确检测新的目标类别。:方向一致性损失(LDC)用于在模型合并过程中缓解权重更新冲突,惩罚共享参数空间中与先前增量变化方向不一致的更新,促进共享任务向量的一致演化,确保稳定的增量学习。,其他方法存在严重的误分类问题,而DuET能有效地克服这些挑战,正确检测到大多数目标实例,突出了其在无缝适应新领域中未见类别的有效性。同时,方向一致性损失(
2025-07-13 19:01:25
435
原创 TMI‘24 | 自监督轻量级内窥镜深度估计:结合CNN与Transformer
近年来,越来越多的医学工程任务,如手术导航、术前配准和手术机器人,依赖于三维重建技术。自监督深度估计在内窥镜场景中引起了广泛关注,因为它不需要真实深度标签。大多数现有方法通过增加参数规模来提高性能。因此,设计一个能够获得竞争性结果的轻量级自监督模型成为一个热门话题。我们提出了一种轻量级网络,结合卷积神经网络(CNN)和Transformer进行深度估计。
2025-07-13 09:30:00
4
原创 ICLR 2025 | MambaPEFT: 探索针对Mamba的参数高效微调方法
通过利用海量数据构建大型模型,基于Transformer的模型生态系统已逐步确立。参数高效微调(PEFT)是一项至关重要的技术,它能以最低成本将这些模型应用于下游任务,同时实现高效的性能表现。最近,基于状态空间模型(SSM)的Mamba模型作为Transformer的潜在替代方案受到了广泛关注。尽管已经提出了许多基于Mamba的大规模模型,但如何高效地将预训练的Mamba模型应用于下游任务仍有待研究。在本文中,作者对适用于Mamba的PEFT方法展开了探索性分析。
2025-07-13 09:30:00
8
原创 TCSVT 2024 | 基于Transformer的多模态图像通用融合算法TUFusion
多模态图像融合是多模态融合领域的重要研究方向之一。该技术可利用互补的多模态图像实现图像和数据增强,在医学、工业、安防消防、自动驾驶和消费电子等领域有着广泛的应用。在这项工作中,作者提出了一种基于Transformer的通用融合(TUFusion)算法,该算法具备多领域融合能力。TUFusion算法的优势在于其混合Transformer和卷积神经网络(CNN)的编码器结构设计,以及一种新的复合注意力融合策略,使其拥有全局和局部信息整合能力。与经典的先进多模态图像融合方法相比,在多领域数据集上的实验结果表明,T
2025-07-13 09:30:00
8
原创 TPAMI 2025 | 通过强化学习加速大规模线性规划中的预求解
作为现代线性规划(LP)求解器中最关键的组件之一,线性规划中的预求解采用了丰富的预求解器,通过等价变换消除输入问题中不同类型的冗余。作者通过大量实验发现,预求解例程,即确定(P1)选择哪些预求解器、(P2)以何种顺序执行以及(P3)何时停止的方法,对求解线性规划的效率有显著影响。然而,由于搜索空间巨大,设计高质量的预求解例程极具挑战性,并且要在不同任务上进一步优化例程以实现高性能,需要广泛的领域知识和手动调整。
2025-07-13 09:30:00
6
原创 ICCV 2025 | 中科大 & 上海 AI 实验室新范式:主动特征解耦 + 可逆融合,UHD 图像恢复实现高质量重建
基于变分自编码器(VAE)的研究虽提高了效率,但在退化图像中,退化成分与背景元素相互耦合,使得信息压缩和补偿难以控制,恢复后的图像常出现细节丢失和退化去除不完全的问题。D²R - UHDNet通过解耦以背景为主和以退化为主的特征,实现了可控的信息丢失和有针对性的信息补偿,在保持效率的同时,显著减轻了传统UHD恢复方法中的信息丢失问题。与传统信息压缩方法相比,D²R - UHDNet在信息丢失和补偿阶段具有更好的可控性,表现出显著的信息保留能力,验证了图像成分解耦策略的必要性和有效性。
2025-07-12 19:01:38
639
原创 TCSVT 2024 | ERDUnet:一种用于医学图像分割的高效残差双编码Unet
医学图像分割在临床诊断中应用广泛,基于卷积神经网络的方法已能实现较高的准确率。然而,提取全局上下文特征仍有困难,且参数过多,难以应用于临床。为此,作者提出一种新型网络结构,对传统的编码器 - 解码器网络模型进行改进,在保证分割精度的同时节省参数。作者通过构建一个能同时提取局部特征和全局连续信息的编码器模块,提高了特征提取效率。设计了一种新型注意力模块,优化分割边界区域,同时提高训练效率。还改进了解码部分的特征传递结构,充分融合不同层次的特征,更精细地恢复空间分辨率。
2025-07-12 13:02:21
7
原创 TMI 2025 | 基于原型引导图推理网络的少样本医学图像分割
少样本语义分割(FSS)在数据稀缺的场景中具有巨大潜力,特别是在仅有少量标注数据的医学分割任务中。现有的大多数FSS方法通常在支持原型的指导下区分查询对象。然而,在实际临床场景中,同一解剖类别的支持对象与查询对象在外观和尺度上的差异往往非常大,从而导致不理想的查询分割掩码。为应对上述挑战,作者提出了一种新颖的原型引导图推理网络(PGRNet),以明确探索结构化查询图像中的潜在上下文关系。具体而言,提出了一种原型引导图推理模块,在支持原型的指导下对查询图执行信息交互,以充分利用查询图像的结构属性,克服类内差异
2025-07-12 12:59:17
9
原创 MIA 2025 | 基于风格混合增强解缠学习的无监督域自适应医学图像分割
关键词无监督域适应;解缠学习;风格混合;医学图像分割摘要无监督域适应(UDA)通过提高模型的泛化能力,在解决跨模态医学分割中的域偏移问题方面展现出了令人瞩目的性能。然而,现有的大多数UDA方法依赖于具有多样性约束的高质量图像翻译,以显式地增加潜在的数据多样性,但这难以确保语义一致性并捕获域不变表示。在本文中,作者提出了一种新颖的风格混合增强解缠学习(SMEDL)方法,用于UDA医学图像分割,无需图像翻译和多样性约束,以进一步提高域泛化能力并增强域不变学习能力。首先,作者的方法采用解缠风格混合,通过解缠风格
2025-07-12 12:56:34
363
原创 TGRS 2025 | 多分支相互引导学习用于红外小目标检测
目前,许多红外目标检测方法主要聚焦于设计模块,以应对目标的两个关键特性:信号微弱和尺寸微小。然而,这些方法往往未能充分利用针对弱小目标内容的引导学习,导致检测性能欠佳,尤其是在形状保持和目标定位方面。为解决这一挑战,本文提出了一种多分支互导学习网络(MMLNet),即便在图像中缺乏清晰的形态和纹理特征时,也能提高红外目标检测的准确性。该方法由三个分支组成:边缘分支、定位分支和检测分支,每个分支都从独特视角设计了专门的模块。
2025-07-12 09:30:00
7
原创 ICML 2024 | 卷积网络与Transformer、有监督学习与CLIP:超越ImageNet准确率的研究
现代计算机视觉为从业者提供了种类繁多的模型,从众多选项中为特定应用选择合适的模型颇具挑战。传统上,人们通过ImageNet上的分类准确率来比较相互竞争的模型架构和训练协议。然而,这单一指标并不能全面反映对于专门任务至关重要的性能差异。在这项工作中,作者针对ConvNet和视觉Transformer架构,在监督学习和CLIP训练范式下,对超越ImageNet准确率的模型表现进行了深入的对比分析。
2025-07-12 09:30:00
7
原创 TPAMI 2025 | 基于约束边界游走框架:利用深度神经网络增强约束优化
约束优化问题在各个领域普遍存在,虽然传统技术能提供解决方案,但往往在可扩展性方面存在困难。作者利用深度神经网络(DNN)在优化中的强大能力,提出了一种新的基于学习的方法——约束边界游走框架(CBWF),以应对这些挑战。作者的贡献包括:受活动集方法启发,引入边界游走策略(BWS),增强等式约束的可行性,并将利普希茨常数视为可学习参数。此外,作者评估了正则化项,表明非光滑L2范数能产生更优的结果。在合成数据集和ACOPT数据集上的大量测试表明,CBWF具有优越性,在目标损失和约束损失方面均优于现有的基于深度学习
2025-07-12 09:30:00
4
转载 基于深度学习模型融合的工业产品(零部件)工艺缺陷检测算法简述
分发层,只是原来单个网络的输入层。空白层,这一层的目的是进一步梳理特征信号,进一步处理,比如添加合适的比例放大特征图等等,当然,这只是初步的想法,还没有实际去做。VGG16相比前辈AlexNet网络做了诸多改进,其中比较主要的是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5),对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小,参数更少,节省算力。
2025-07-11 20:37:48
6
转载 不存在抄袭,华为回应!
盘古Pro MoE开源模型是基于昇腾硬件平台开发、训练的基础大模型,并非基于其他厂商模型增量训练而来,在架构设计、技术特性等方面做了关键创新,是全球首个面向昇腾硬件平台设计的同规格混合专家模型,创新性地提出了分组混合专家模型(MoGE)架构,有效解决了大规模分布式训练的负载均衡难题,提升训练效率。7月5日,华为盘古Pro MoE技术开发团队发表声明称,盘古Pro MoE开源模型是基于昇腾硬件平台开发、训练的基础大模型,并非基于其他厂商模型增量训练而来。来源 诺亚方舟实验室。
2025-07-11 20:37:48
11
转载 Nature Communications|新加坡国立大学发布基于视觉-语言模型的眼底疾病诊断方法
尽管有几种方法被提出用于同时筛查多种眼底疾病,并取得了有希望的性能,但大多数当前的眼科疾病筛查AI模型都是在特定任务的数据集上训练的,这导致了在有新数据(例如,由不同相机获取的图像)或任务变化(例如,引入新的或罕见的类别)时检测中不可避免的错误。因此,大多数AI模型都是在有限的数据和疾病类别上进行训练的,限制了它们的特征表示。因此,RetiZero在各种下游任务中实现了卓越的性能,包括零样本眼底疾病识别、图像到图像的眼底疾病检索、AI辅助临床诊断、内部领域眼底疾病识别、少样本微调和跨领域眼底疾病识别。
2025-07-11 20:37:48
4
原创 TCSVT‘25 | 基于CNN - Transformer校正协同学习的医学图像分割
自动且精确的医学图像分割(MIS)对于临床诊断和分析至关重要。当前的MIS方法主要依赖卷积神经网络(CNN)或自注意力机制(Transformer)进行特征建模。然而,基于CNN的方法由于全局依赖性有限,存在定位不准确的问题;而基于Transformer的方法则因缺乏局部关注,往往呈现出粗糙的边界。尽管一些CNN-Transformer混合方法旨在综合互补的局部和全局信息以提升性能,但CNN和Transformer的结合引入了大量参数,增加了计算成本。
2025-07-11 09:30:00
11
原创 TCSVT‘25 | 用于非配对前段光学相干断层扫描图像去噪的对比度感知边缘增强生成对抗网络
前段光学相干断层扫描(AS-OCT)是一种常用的成像技术,能够直接显示前段结构,但其固有的散斑噪声严重损害了图像的视觉可读性和后续临床分析。尽管考虑到临床监督数据有限,已开发出非配对OCT图像去噪算法来提高视觉质量,但在去噪的同时保留边缘结构仍然具有挑战性,尤其是在层次结构少、对比度低的AS-OCT图像中。本文提出了一种基于边缘增强生成对抗网络((E2GAN)(E^{2}GAN)(E2GAN))的对比度感知方法,专门用于非配对AS-OCT图像去噪。具体而言,为了提高边缘结构的一致性,作者设计了一种对比度注意
2025-07-11 09:30:00
10
原创 TGRS 2025 | 用于遥感图像分类的多样文本提示生成
遥感图像训练数据不足通常会导致遥感图像分类模型的准确率较低。为此,作者提出了一种多样化文本提示生成学习(DPL)方法。上下文优化(CoOp)模型通过可学习的文本提示,将CLIP模型的特征提取能力迁移到下游任务中。然而,遥感图像样本数量较少时容易产生噪声。相比之下,DPL引入了一种多样化的文本提示生成结构。由于多个提示具有多样性,能够抑制样本不足产生的噪声。此外,为了保持提示的多样性,作者提出了一种提示多样性损失。该损失使提示相互远离,从而抑制了有限训练样本产生的噪声。
2025-07-11 09:30:00
10
原创 TCSVT 2024 | 基于互学习的伪监督低光图像增强
低光照图像增强(LIE)在许多高级视觉任务中至关重要,因为曝光不足的图像可见性差,会严重降低后续图像识别、分析等任务的性能。尽管最近基于深度学习的 LIE 方法表现出了良好的性能,但大多数方法需要大量的配对训练图像,这限制了它们在实际场景中的实用性。在本文中,作者提出了一种结合互学习的伪监督 LIE 方法。具体来说,对于给定的低光照图像,作者首先使用二次曲线生成一个伪清晰图像,将其作为监督的辅助真实值。
2025-07-11 09:30:00
7
原创 TPAMI 2025 | YOLO-MS:重新思考实时目标检测的多尺度表示学习
作者旨在为目标检测领域提供一种高效且性能卓越的目标检测器,命名为 YOLO-MS。其核心设计基于一系列研究,探究基本模块的多分支特征以及不同内核大小的卷积,如何影响不同尺度目标的检测性能。研究成果是一种新策略,可显著增强实时目标检测器的多尺度特征表示。为验证该工作的有效性,作者在 MS COCO 数据集上从头开始训练 YOLO-MS,不依赖任何其他大规模数据集,如 ImageNet 或预训练权重。
2025-07-11 09:30:00
7
转载 ICCV 2025 | 电子科大MobileIE:超轻量 ConvNet + 重参数化,移动端实时图像增强实现1100FPS
未来,研究团队将探索优化方法,将MobileIE的应用扩展到更多不同的任务中。例如在LLE任务中,与轻量级最先进方法IAT相比,MobileIE在仅使用4.7%参数的情况下实现了可比的PSNR提升,推理速度快6.9倍。提出分层双路径注意力(HDPA)机制,以双路径结构自适应提取全局与局部特征,融合空间与通道交互,提升特征精度与全面性,且结构简单,计算成本低。根据预测输出与真实值的局部均值和方差计算加权因子,动态调整每个像素对总损失的贡献,更关注异常像素优化,平衡损失函数的鲁棒性与细节保留能力。
2025-07-10 12:05:19
20
转载 「Tokens是胡扯」,Mamba作者抛出颠覆性观点,揭露Transformer深层缺陷
值得注意的是,这些机制与经典 RNN 的门控结构紧密相关。从 CNN 取代计算机视觉领域中人工设计的边缘检测器,到 Transformers 取代自然语言处理领域的语言特征,人工智能的重大进步总是伴随着更少的数据处理和更多的自动学习(正如《苦涩的教训》所倡导的那样)。如今,这类混合模型已被大规模扩展到非常庞大的规模(例如采用 MoE 架构的总参数量达到 5600 亿),并由一些顶级实验室推出,如 NVIDIA 的 Nemotron-H 和腾讯的 T1/TurboS,都已在多个任务上取得了最先进的性能。
2025-07-10 12:05:19
11
原创 INFFUS 2025 | 多模态图像配准的模态不变渐进表示
许多应用,如自动驾驶,严重依赖多模态数据。然而,分辨率、视角和光路结构的差异会导致多模态图像之间出现像素错位,从而使融合结果产生失真和边缘伪影。除了广泛使用的手动校准方法外,基于学习的方法通常采用两阶段配准过程,即“转换后配准”。然而,模态之间的差异使得这种方法的连贯性较差。它在配准过程中引入了更多的不确定性,误导了不同位置的特征对齐,并限制了变形场的精度。为了应对这些挑战,作者提出了模态不变渐进式表示(MIPR)方法。
2025-07-10 09:54:00
12
原创 ICML 2024 | 扩散模型解纠缠潜空间的等距表示学习
尽管扩散模型在生成式建模领域取得了巨大成功且具有潜力,但其潜在空间大多仍未被探索。事实上,现有扩散模型的潜在空间是纠缠的,从潜在空间到图像空间的映射存在扭曲。为解决这一问题,作者提出等距扩散(Isometric Diffusion),为扩散模型配备几何正则化器,引导模型学习几何合理的潜在空间。该方法使扩散模型能够学习到更解耦的潜在空间,从而实现更平滑的插值、更准确的反演,以及在潜在空间中更精确地控制属性。大量实验表明,所提方法在图像插值、图像反演和线性编辑方面具有优势。
2025-07-10 09:51:48
18
原创 TPAMI 2025 | 通过异构自监督学习增强表征
融合来自不同架构的异构表征已助力多种视觉任务,例如一些混合网络结合了Transformer和卷积神经网络。然而,在自监督学习中,这些异构架构间的互补性尚未得到充分挖掘。因此,作者提出了异构自监督学习(HSSL),促使基础模型从架构与自身异构的辅助头中学习。在此过程中,HSSL以表征学习的方式赋予基础模型新特性,且无需改变其结构。为全面理解HSSL,作者在包含基础模型和辅助头的多种异构组合上进行了实验。发现基础模型的表征质量随其与辅助头的架构差异增大而提升。
2025-07-10 09:39:30
16
原创 AAAI‘24 | 基于视觉 - 语义一致性的稳健互强化3D多模态医学图像融合框架
本文提出了一种稳健的三维医学图像融合框架,旨在在视觉融合与病灶分割之间构建一种相互强化机制,实现两者的双重提升。具体而言,作者通过共享特征融合模块,探究视觉与语义之间的一致性。通过对视觉融合损失和病灶分割损失的联合优化,视觉相关和语义相关的特征将被拉到同一领域,以相互强化的方式有效促进精度提升。此外,作者在特征提取与重构过程中构建了两级细化约束,为框架的稳健性提供保障。得益于对医学图像常见降质因素的充分考虑,该框架不仅能为医生观察提供清晰的视觉融合结果,还能增强病灶分割对这些不利因素的抵御能力。
2025-07-10 09:30:00
18
原创 TMI 2025 | 基于显式形状先验的医学图像分割学习
医学图像分割是医学图像分析和手术规划的一项基础任务。近年来,基于U-Net的网络在医学图像分割领域占据主导地位。然而,卷积神经网络(CNN)存在感受野有限的问题,难以对器官或肿瘤的长距离依赖关系进行建模。此外,这些模型严重依赖最终分割头的训练。现有的方法无法同时很好地解决上述局限性。因此,在本研究中,作者提出了一种新颖的形状先验模块(SPM),该模块能够明确引入形状先验,以提升基于U-Net模型的分割性能。明确的形状先验由全局和局部形状先验组成。前者具有粗略的形状表示,赋予网络对全局上下文进行建模的能力。
2025-07-10 09:30:00
114
转载 TGRS 2025 | 融合Mamba与 Transformer!HSI-MFormer:图像分类的多尺度建模新框架
未来,作者计划进一步研究更优的参数组合,特别是在复杂和高分辨率的高光谱场景中,探索具有更大尺度差的内核尺度配置,以提升模型的性能。论文提出了一种新颖的混合Mamba - Transformer架构HSI - MFormer,它结合了Transformer和Mamba的短程和长程建模能力,实现了多尺度光谱 - 空间特征提取。论文在四个公开高光谱数据集上进行了广泛的实验对比,与传统方法、基于CNN的方法、基于Transformer的方法和基于Mamba的方法相比,HSI - MFormer表现出明显的优越性。
2025-07-09 18:07:37
23
转载 为什么苹果不对 12306 购票抽成 30%
比如类似如下类型允许采用非 IAP 方式,类似 12306 显然是满足其中「3.1.3(e)」的「App之外的商品和服务」,这一类是可以使用非 IAP 的方式的。至于 30% 的抽成,则是在《付费协议 App》中说明的,如果是免费应用需要签署《免费 App协议》,付费 App 需要签署《付费 App 协议》。然而,无论是电商平台的商品购买还是火车票的购买,显然不属于解锁特性和功能的范畴,因此可以使用其他支付方式,且只能使用其他支付方式。这只是我的看法,如果你有不同的理解,那么你的观点是对的。
2025-07-09 18:07:37
18
转载 【全网热搜】AC学术平台·2025下半年重要学术会议清单
经审核,在AC学术平台发布的所有会议均将邀请全球知名学者莅临现场,分享前沿学术研究成果,会议论文均将。协办单位:上海市漕河泾新兴技术开发区发展总公司、深圳市巨湾时空大数据技术研究院、上海市社会信用促进中心、昆明理工大学、长沙理工大学、AC学术平台。有意向投稿参会的学者均可联系。2025 年第三届机器视觉、图像处理与 影像技术国际会议(MVIPIT 2025)协办单位:IEEE南京分会、淮北师范大学、蚌埠学院、AC学术平台。协办单位:长沙理工大学、湖南科技大学、吉首大学、AC学术平台。
2025-07-09 18:07:37
51
原创 AAAI‘24 | 基于稀疏贝叶斯深度学习的跨域医学图像重建
跨域医学图像重建旨在解决仅在一个源数据集上训练的深度学习模型可能无法有效地推广到来自不同医院的未知目标数据集的问题。最近的一些方法取得了令人满意的重建性能,但往往以大量的参数和时间消耗为代价。为了在跨域图像重建质量和模型计算效率之间取得平衡,作者提出了一种轻量级的稀疏贝叶斯深度学习方法。值得注意的是,作者应用了一种固定形式变分贝叶斯(FFVB)方法,来量化从源域退化分布中导出的逐像素不确定性先验。
2025-07-09 09:30:00
24
原创 TMI‘25 | 基于注意力引导学习与特征重建的临床和超声图像皮肤病变诊断方法
皮肤病变是全球最常见的疾病之一,其大多数类别在形态和外观上高度相似。深度学习模型能够有效降低类别间的变异性和类别内的变异性,从而提高诊断准确性。然而,现有的多模态方法仅限于皮肤临床和皮肤镜模态中病变的表面信息,这限制了皮肤病变诊断准确性的进一步提高。因此,我们需要进一步研究皮肤超声中病变的深度信息。本文提出了一种新的皮肤病变诊断网络,结合临床和超声模态以融合病变的表面和深度信息,从而提高诊断准确性。
2025-07-09 09:30:00
350
转载 低调使用!导师给的写论文必备资源!有种导师叫做“别人家的导师”
这些模块可以像搭积木一样,可以按照自己的想法插入到模型中,构建出自己的模型结构。而且模块都是由大牛设计,性能非常强,能大大减少我们的工作量与模型复杂程度。这是一套由多名顶会审稿人主讲的科研方法论,包含12节科研全流程攻略。写好论文和毕业,就业,深造息息相关。我特意给粉丝整理了下面的这些写论文需要的必备资源,免费分享。帮你省去大量找论文,下载论文的时间。13个方向的2000篇多篇重要论文+可复现的开源代码。13个方向的2000篇研究+开源代码,扫码免费领。写好论文可以说是我们科研人的第一指标。
2025-07-08 19:02:30
17
Python视觉实战项目31讲.pdf
2020-10-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人