【YOLOV8】YOLOV8模型导出export参数说明

引言:

     Ultralytics YOLOv8 的导出模式提供了多种选项,用于将训练好的模型导出到不同的格式,可以在不同平台设备上部署

使用示例

     将yolov8x.pt导出为ONNX格式

from ultralytics import YOLO
model = YOLO('yolov8x.pt') 
model.export(format='onnx')

export参数详解

ArgumentTypeDefaultDescription
formatstr‘torchscript’导出模型的目标格式,例如 ‘onnx’、‘torchscript’、‘tensorflow’ 或其他格式,用于定义与各种部署环境的兼容性
imgszint or tuple640模型输入的期望图像大小。可以是整数,或者用于特定尺寸的元组(高度,宽度)
kerasboolFalse启用导出为Keras格式的TensorFlow SavedModel,提供与TensorFlow服务和API的兼容性
optimizeboolFalse在导出到TorchScript时应用移动设备优化,可能会减少模型大小并提高性能
halfboolFalse启用FP16(半精度)量化,减少模型大小,并可能在支持的硬件上加速推理
int8boolFalse启用INT8量化,进一步压缩模型并加速推理,精度损失最小,主要适用于边缘设备
dynamicboolFalse允许 ONNX 和 TensorRT 导出支持动态输入尺寸,提高处理不同图像尺寸的灵活性
simplifyboolFalse通过 onnxslim 简化 ONNX 导出的模型图,可能提高性能和兼容性
opsetintNone指定 ONNX opset 版本,以确保与不同的 ONNX 解析器和运行时兼容。如果未设置,将使用最新支持的版本
workspacefloat4.0设置 TensorRT 优化的最大工作空间大小(以 GiB 为单位),以平衡内存使用和性能
nmsboolFalse为 CoreML 导出添加非极大值抑制(NMS),这是准确和高效检测后处理的关键
batchint1指定导出模型的批量推理大小或在预测模式下导出模型将同时处理的最大图像数量

export format 参数详解

以下是 YOLOv8 支持的导出格式。可以通过 format 参数将模型导出为任何格式,例如 format=‘onnx’ 或 format=‘engine’。导出的模型可以直接用于预测或验证,例如使用 yolo predict model=yolov8n.onnx。

Formatformat ArgumentModelMetadataArguments
PyTorch-yolov8n.pt-
TorchScripttorchscriptyolov8n.torchscriptimgsz, optimize, batch
ONNXonnxyolov8n.onnximgsz, half, dynamic, simplify, opset, batch
OpenVINOopenvinoyolov8n_openvino_model/imgsz, half, int8, batch
TensorRTengineyolov8n.engineimgsz, half, dynamic, simplify, workspace, int8, batch
CoreMLcoremlyolov8n.mlpackageimgsz, half, int8, nms, batch
TF SavedModelsaved_modelyolov8n_saved_model/imgsz, keras, int8, batch
TF GraphDefpbyolov8n.pbimgsz, batch
TF Litetfliteyolov8n.tfliteimgsz, half, int8, batch
TF Edge TPUedgetpuyolov8n_edgetpu.tfliteimgsz
TF.jstfjsyolov8n_web_model/imgsz, half, int8, batch
PaddlePaddlepaddleyolov8n_paddle_model/imgsz, batch
NCNNncnnyolov8n_ncnn_model/imgsz, half, batch

本文参考:
https://docs.ultralytics.com/modes/export/#arguments

YOLOv8中,export模式用于将YOLOv8模型导出为可用于部署的格式。这种导出模式非常有用,因为它可以将模型转换为其他软件应用程序或硬件设备可用的格式。为了使用export模式,你需要执行以下步骤: 1. 首先,加载YOLOv8模型,可以使用以下代码: model = YOLO('yolov8n.pt') # 或者 model = YOLO('path/to/best.pt') 2. 然后,使用model.export()函数将模型导出为所需的格式。例如,如果要将模型导出为ONNX格式,可以使用以下代码: model.export(format='onnx') 这样,你就可以将YOLOv8模型导出为ONNX格式,以供部署到其他环境中使用。这对于将模型部署到生产环境中非常有帮助。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [YOLOv8教程系列:一、使用自定义数据集训练YOLOv8模型(详细版教程,你只看一篇->调参攻略),包含环境...](https://blog.csdn.net/weixin_45921929/article/details/128673338)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [【目标检测】YOLOV8实战入门(六)模型导出](https://blog.csdn.net/qq_43456016/article/details/130448606)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值