日常生活中的“凹”和“凸”
在日常生活中,“凹”通常指一个物体或表面向内弯曲,而“凸”则指一个物体或表面向外突出。比如:
-
凹:我们一般形容为“凹下去”
-
凸:我们一般形容为“凸出来”
但数学上的“凹”与"凸"可能有所不同!!!
什么是凹函数和凸函数?
凹函数(Concave Function)
1. 样例
- 想象一个碗倒过来的样子。当你把一个球放在这样的表面上时,球会滚向边缘,不会停留在中间。
- 再想象一个桥拱的形状,上面平坦,下面是弯曲的。无论你在桥拱的哪个地方放一个球,球都会滚向两边。
2. 定义
- 凹函数的定义是:对于函数 f(x)f(x)f(x) 上的任意两点 x1x_1x1 和 x2x_2x2,以及任意的 λ∈[0,1]\lambda \in [0, 1]λ∈[0,1],都有 f(λx1+(1−λ)x2)≥λf(x1)+(1−λ)f(x2)f(\lambda x_1 + (1-\lambda)x_2) \geq \lambda f(x_1) + (1-\lambda)f(x_2)f(λx1+(1−λ)x2)≥λf(x1)+(1−λ)f(x2)。
- 也就是说,函数在两点之间的线段始终在函数的图像下方或正好位于图像上。
凹函数的例子:f(x)=−x2f(x) = -x^2f(x)=−x2。这是一个开口向下的抛物线。
3. 性质
- 局部最大值:如果f(x)f(x)f(x)在某个点x∗x^*x∗达到局部最大值,则x∗x^*x∗也是全局最大值点。
- 导 数 : 如 果 f(x)f( x)f(x)是可导的,则f′(x)f^{\prime}(x)f′(x)是递减的(即f′′(x)≤0f^{\prime\prime}(x)\leq0f′′(x)≤0)。
- 和:如果f(x)f(x)f(x)和g(x)g(x)g(x)都是凹函数,则f(x)+g(x)f(x)+g(x)f(x)+g(x)也是凹函数。
- 线 性 变 换 : 如 果 f(x)f( x)f(x)是凹函数,那么对于任何常数ccc,cf(x)cf(x)cf(x)也是凹函数;如果AAA是一个线性变换矩阵,则f(Ax)f(Ax)f(Ax)也是凹
函数。
凸函数(Convex Function)
1. 样例
- 想象一个碗的正常样子。当你把一个球放在这样的表面上时,球会滚向底部,停留在中间。
2. 定义
-
凸函数的定义是:对于函数 g(x)g(x)g(x) 上的任意两点 x1x_1x1 和 x2x_2x2,以及任意的 λ∈[0,1]\lambda \in [0, 1]λ∈[0,1],都有 g(λx1+(1−λ)x2)≤λg(x1)+(1−λ)g(x2)g(\lambda x_1 + (1-\lambda)x_2) \leq \lambda g(x_1) + (1-\lambda)g(x_2)g(λx1+(1−λ)x2)≤λg(x1)+(1−λ)g(x2)。
-
也就是说,函数在两点之间的线段始终在函数的图像上方或正好位于图像上。
-
凸函数的例子:g(x)=x2g(x) = x^2g(x)=x2。这是一个开口向上的抛物线。
假设 g(x)=x2,这是一个典型的凸函数。我们选择两个点 x1=1 和 x2=3,以及 λ=0.5。∙λx1+(1−λ)x2=0.5⋅1+0.5⋅3=2∙g(λx1+(1−λ)x2)=g(2)=22=4∙λg(x1)+(1−λ)g(x2)=0.5⋅12+0.5⋅32=0.5+4.5=5\begin{aligned}&\text{假设 }g(x)=x^2\text{,这是一个典型的凸函数。我们选择两个点 }x_1=1\text{ 和 }x_2=3\text{,以及 }\lambda=0.5\text{。}\\&\bullet \lambda x_1+(1-\lambda)x_2=0.5\cdot1+0.5\cdot3=2\\&\bullet g(\lambda x_1+(1-\lambda)x_2)=g(2)=2^2=4\\&\bullet \lambda g(x_1)+(1-\lambda)g(x_2)=0.5\cdot1^2+0.5\cdot3^2=0.5+4.5=5\end{aligned}假设 g(x)=x2,这是一个典型的凸函数。我们选择两个点 x1=1 和 x2=3,以及 λ=0.5。∙λx1+(1−λ)x2=0.5⋅1+0.5⋅3=2∙g(λx1+(1−λ)x2)=g(2)=22=4∙λg(x1)+(1−λ)g(x2)=0.5⋅12+0.5⋅32=0.5+4.5=5
可以看到 g(2)=4≤5=0.5⋅12+0.5⋅32,符合凸函数的定义。\text{可以看到 }g(2)=4\leq5=0.5\cdot1^2+0.5\cdot3^2\text{,符合凸函数的定义。}可以看到 g(2)=4≤5=0.5⋅12+0.5⋅32,符合凸函数的定义。
3.性质
- 局部最小值:如果g(x)g(x)g(x)在某个点x∗x^*x∗达到局部最小值,则x∗x^*x∗也是全局最小值点
- 导数 : 如 果 g( x)是可导的,则g′(x)g^{\prime}(x)g′(x)是递增的 (即g′′(x)≥0)g^{\prime\prime}(x)\geq0)g′′(x)≥0)
- 和:如果g(x)g(x)g(x)和h(x)h(x)h(x)都是凸函数,则g(x)+h(x)g(x)+h(x)g(x)+h(x)也是凸函数
- 线性变换:如果g(x)g(x)g(x)是凸函数,那么对于任何常数ccc,cg(x)cg(x)cg(x)也是凸函数;如果AAA是一个线性变换矩阵,则g(Ax)g(Ax)g(Ax)也是巴
函数。
应用
- 优化问题:在优化问题中,如果我们想找到一个函数的最小值,而这个函数是凸的,那么找到全局最小值就相对容易。相反,如果函数是凹的,我们需要找到的是最大值。