剑指 Offer II 003. 前 n 个数字二进制中 1 的个数


comments: true
edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20003.%20%E5%89%8D%20n%20%E4%B8%AA%E6%95%B0%E5%AD%97%E4%BA%8C%E8%BF%9B%E5%88%B6%E4%B8%AD%201%20%E7%9A%84%E4%B8%AA%E6%95%B0/README.md

剑指 Offer II 003. 前 n 个数字二进制中 1 的个数

题目描述

给定一个非负整数 n ,请计算 0n 之间的每个数字的二进制表示中 1 的个数,并输出一个数组。

 

示例 1:

输入: n = 2
输出: [0,1,1]
解释: 
0 --> 0
1 --> 1
2 --> 10

示例 2:

输入: n = 5
输出: [0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

 

说明 :

  • 0 <= n <= 105

 

进阶:

  • 给出时间复杂度为 O(n*sizeof(integer)) 的解答非常容易。但你可以在线性时间 O(n) 内用一趟扫描做到吗?
  • 要求算法的空间复杂度为 O(n) 。
  • 你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount )来执行此操作。

 

注意:本题与主站 338 题相同:https://leetcode.cn/problems/counting-bits/

解法

方法一:动态规划

我们定义 f [ i ] f[i] f[i] 表示整数 i i i 的二进制表示中 1 1 1 的个数。那么对于一个整数 i i i,它的二进制表示中 1 1 1 的个数为 f [ i ∧ ( i − 1 ) ] + 1 f[i \wedge (i - 1)] + 1 f[i(i1)]+1,其中 i ∧ ( i − 1 ) i \wedge (i - 1) i(i1) 是将 i i i 的二进制表示中的最低位的 1 1 1 变成 0 0 0 之后的数,显然 i ∧ ( i − 1 ) < i i \wedge (i - 1) \lt i i(i1)<i,且 f [ i ∧ ( i − 1 ) ] f[i \wedge (i - 1)] f[i(i1)] 已经被计算出来了,因此我们可以得到状态转移方程:

f [ i ] = f [ i ∧ ( i − 1 ) ] + 1 f[i] = f[i \wedge (i - 1)] + 1 f[i]=f[i(i1)]+1

时间复杂度 O ( n ) O(n) O(n),其中 n n n 是题目给定的整数。忽略答案数组的空间消耗,空间复杂度 O ( 1 ) O(1) O(1)

Python3
class Solution:
    def countBits(self, n: int) -> List[int]:
        f = [0] * (n + 1)
        for i in range(1, n + 1):
            f[i] = f[i & (i - 1)] + 1
        return f
Java
class Solution {
    public int[] countBits(int n) {
        int[] f = new int[n + 1];
        for (int i = 1; i <= n; ++i) {
            f[i] = f[i & (i - 1)] + 1;
        }
        return f;
    }
}
C++
class Solution {
public:
    vector<int> countBits(int n) {
        vector<int> f(n + 1);
        for (int i = 1; i <= n; ++i) {
            f[i] = f[i & (i - 1)] + 1;
        }
        return f;
    }
};
Go
func countBits(n int) []int {
	f := make([]int, n+1)
	for i := 1; i <= n; i++ {
		f[i] = f[i&(i-1)] + 1
	}
	return f
}
TypeScript
function countBits(n: number): number[] {
    const f: number[] = Array(n + 1).fill(0);
    for (let i = 1; i <= n; ++i) {
        f[i] = f[i & (i - 1)] + 1;
    }
    return f;
}
Swift
class Solution {
    func countBits(_ n: Int) -> [Int] {
        if n == 0 {
            return [0]
        }
        var f = [Int](repeating: 0, count: n + 1)
        for i in 1...n {
            f[i] = f[i & (i - 1)] + 1
        }
        return f
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值