基站选址
题目描述
有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位置,使得总费用最小。
输入
输入文件的第一行包含两个整数N,K,含义如上所述。
第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。
第三行包含N个整数,表示C1,C2,…CN。
第四行包含N个整数,表示S1,S2,…,SN。
第五行包含N个整数,表示W1,W2,…,WN。
输出
输出文件中仅包含一个整数,表示最小的总费用。
样例输入
3 2
1 2
2 3 2
1 1 0
10 20 30
样例输出
4
提示
40%的数据中,N<=500;
100%的数据中,K<=N,K<=100,N<=20,000,Di<=1000000000,Ci<=10000,Si<=1000000000,Wi<=10000。
题解:
看题目意思是求费用最小,并且不必输出方案。
让人容易想到DP,不难想到DP方程式为f[i][j]表示第i个基站键在j,区间[1,j]的花费,转移为f[i][j]=min{f[i][k]+cost[k][j]}+c[j]。(cost[k][j]表示区间[k,j]中需要的赔偿总额)然后优化空间,我们直接在最外维枚举一位i,表示建第i个基站,然后压去DP式子中一维,就变成了f[j]=min{f[k]+cost[k][j]}+c[j]。这个做法效率是O(n^2 k)的,显然过不去。
考虑优化。不难发现f[k]+cost[k][j]是转移中最难处理的,因此想在这里做优化。(具体怎么优化我没想到,单经过大神指点,和几篇题解才明白)
首先设g[k]=f[k]+cost[k][j],然后用线段树维护g[k]。在维护g[k]前要先处理两个数组l[i]和r[i]表示村庄i要被覆盖基站的第一个位置和最后一个位置(就是村庄i要被覆盖的话最左能建基站的位置和最右能建基站的位置)这两个数组可以用二分查找很容易处理(毕竟D[i]是单调的)。然后我们考虑,假设在村庄x建基站,那我们就要用x进行转移,在处理完x后,处理x+1前,我们要将r[i]=x的村庄i找出来(这里可以用邻接表将r[i]相同的存起来),然后在[1,l[i]-1]这段区间上加上w[i],这是因为我们是在从前往后处理,x会逐渐增大,所以对于那些左端点无法被基站覆盖的村庄,随着x的后移左端点也不会被覆盖,所以要加上赔偿的代价。这样我们就可以用线段树维护g[k]了,然后每次都在[1,i-1]上查询g[k]的min值即可。最后加一点,为了防止遗漏,需要在最后加上一个D[i]=S[i]=inf的村庄,因为每次转移时只考虑了i对其之前的影响,并没有考虑到它对它之后的影响。
#include<iostream>
#include<algorithm>
#include<cstdio&g