【堆】合并果子

多多在果园中合并果子,目标是最小化合并过程中的体力消耗。每次合并两堆果子,消耗的体力等于这两堆果子的重量之和。通过合理规划合并顺序,可以找到消耗最小的体力值。例如,3种果子合并的最优策略可使总消耗为15。输入包含果子种类数n和每种果子的数目,输出是最小的体力耗费值。使用小根堆能有效解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

Input

输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

Output

输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

Sample Input
3 
1 2 9
Sample Output
15 

维护一个小根堆,然后合并最小的俩个堆。

#include<cstdio>
int a[200003],n,l,ans=0;
void up(int k){  //上替
	while(a[k]<a[k/2]&&k/2){
		int l=a[k];
		a[k]=a[k/2];
		a[k/2]=l;
		k/=2;
	}
}
void down(int k){   //下沉
	int y;
	while(k*2<l){  //特殊判断
	if((a[k]>a[k*2]||a[k]>a[k*2+1]))
	{
		if(a[k*2]<a[k*2+1]) y=k*2;  //判断要沉到左叉还是右叉
		else y=k*2+1;
		int ll=a[y];  //交换
		a[y]=a[k];
		a[k]=ll;
		k=y;
	}
	else break;
	}
	if(k*2==l)
	if(a[k]>a[k*2]){
		int ll=a[k];  //直接沉
		a[k]=a[k*2];
		a[k*2]=ll;
	}
}
void s(int x){   //保证左叉小于右叉
	if(a[x]>a[x+1]){
		int t=a[x];
		a[x]=a[x+1];
		a[x+1]=t;
		down(x);
		down(x+1);
	}
}
int main(){
	//freopen("a.in","r",stdin);
	scanf("%d",&n);
	l=n;
	for(int i=1;i<=n;++i)
	  scanf("%d",&a[i]);
	for(int i=2;i<=n;++i)  //建一个小根堆 
	  up(i);
	s(2);  //保证左叉比右叉小
	for(int i=1;i<n;++i){
	    a[2]=a[1]+a[2];  //加上最小的俩个
    	ans=ans+a[2];
    	int t=a[1];
    	a[1]=a[n-i+1];  //把最后一位放上来
    	a[n-i+1]=2147483647;  //重置
    	for(int j=1;j<=n-i;j++) up(j);  //重新建堆
    	s(2);  //再次保证左叉比右叉小
	}
	printf("%d",ans);  //输出
	fclose(stdin);
	return 0;
}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值