在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
Input
输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
Output
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
Sample Input
3
1 2 9
Sample Output
15
维护一个小根堆,然后合并最小的俩个堆。
#include<cstdio>
int a[200003],n,l,ans=0;
void up(int k){ //上替
while(a[k]<a[k/2]&&k/2){
int l=a[k];
a[k]=a[k/2];
a[k/2]=l;
k/=2;
}
}
void down(int k){ //下沉
int y;
while(k*2<l){ //特殊判断
if((a[k]>a[k*2]||a[k]>a[k*2+1]))
{
if(a[k*2]<a[k*2+1]) y=k*2; //判断要沉到左叉还是右叉
else y=k*2+1;
int ll=a[y]; //交换
a[y]=a[k];
a[k]=ll;
k=y;
}
else break;
}
if(k*2==l)
if(a[k]>a[k*2]){
int ll=a[k]; //直接沉
a[k]=a[k*2];
a[k*2]=ll;
}
}
void s(int x){ //保证左叉小于右叉
if(a[x]>a[x+1]){
int t=a[x];
a[x]=a[x+1];
a[x+1]=t;
down(x);
down(x+1);
}
}
int main(){
//freopen("a.in","r",stdin);
scanf("%d",&n);
l=n;
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
for(int i=2;i<=n;++i) //建一个小根堆
up(i);
s(2); //保证左叉比右叉小
for(int i=1;i<n;++i){
a[2]=a[1]+a[2]; //加上最小的俩个
ans=ans+a[2];
int t=a[1];
a[1]=a[n-i+1]; //把最后一位放上来
a[n-i+1]=2147483647; //重置
for(int j=1;j<=n-i;j++) up(j); //重新建堆
s(2); //再次保证左叉比右叉小
}
printf("%d",ans); //输出
fclose(stdin);
return 0;
}