【DL经典回顾】距离度量大汇总(13-豪斯多夫距离(Hausdorff Distance))
文章目录
在深入探讨深度学习(DL)时,我们常常会发现,有些基础概念虽小,却影响深远。距离度量就是这样一个看似简单,实则至关重要的概念。它是机器学习和深度学习中不可或缺的一环,影响着模型的性能和应用的广泛性。在本专栏中,我们将进行一次深度的探索,回顾距离度量的各种方法,并理解它们的重要性和应用。
一、豪斯多夫距离(Hausdorff Distance)
1. 定义和公式
豪斯多夫距离(Hausdorff Distance)是度量两个点集之间相似度的指标,广泛用于计算机视觉、图像分析和几何形状比较中。给定两个点集 A A A 和 B B