
距离度量大汇总【公式&代码&解释】
文章平均质量分 95
本专栏旨在深入解析深度学习中的距离度量方法,距离度量是机器理解数据的基础,是构建高效、精准模型的关键,本分类专栏将涵盖尽可能多的距离度量方法,并持续更新,平均质量分目标95+,欢迎订阅。
夺命猪头
交流和分享能够促使我们共同进步,您的支持是我不断更新的最大动力。让我们一起探索,共同成长!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【DL经典回顾】距离度量大汇总(0-导言及距离度量方法列表)
在本专栏中,我们将进行一次深度的探索,回顾距离度量的各种方法,并理解它们的重要性和应用。原创 2024-04-02 22:36:40 · 1330 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(29-Dice系数(Dice Coefficient))
Dice系数(Dice Coefficient),也称为Sørensen-Dice系数,是一种用于衡量两个样本集合的相似度的统计工具。原创 2024-04-22 11:14:47 · 1588 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(28-点间互信息(Pointwise Mutual Information, PMI))
点间互信息(Pointwise Mutual Information, PMI)是一种信息论的度量,用于衡量两个事件共同发生的概率与这两个事件独立发生的概率的乘积之比。原创 2024-04-22 11:04:50 · 1652 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(27-拉普拉斯核距离(Laplacian Kernel))
拉普拉斯核(Laplacian Kernel)是一种常用的核函数,广泛应用于机器学习的各种核方法中,如支持向量机(SVM)和核主成分分析(KPCA)。原创 2024-04-22 10:42:55 · 2061 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(26-斯皮尔曼等级相关系数(Spearman‘s Rank Correlation))
斯皮尔曼等级相关系数(Spearman's Rank Correlation Coefficient)是一种非参数的统计度量,用于评估两组数据之间的单调关系的强度。原创 2024-04-22 10:20:08 · 1651 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(25-Sorensen-Dice系数)
Sørensen-Dice系数,也简称为Dice系数,是一种用于比较两个样本集合相似度的度量方法。原创 2024-04-11 15:51:13 · 1877 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(24-最优传输距离(Wasserstein distance))
最优传输距离,也称为Wasserstein距离或推土机距离(Earth Mover's Distance, EMD),源自最优传输问题,用于衡量两个概率分布之间的差异。原创 2024-04-10 15:45:02 · 1243 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(23-最大均值差异(Maximum mean discrepancy))
最大均值差异(Maximum Mean Discrepancy, MMD)是一种用于衡量两个概率分布差异的度量方法,在机器学习和统计学中尤其用于无参数和核方法中。原创 2024-04-10 15:34:52 · 2485 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(22-巴氏距离(Bhattacharyya Distance))
巴氏距离(Bhattacharyya Distance)是用来衡量两个概率分布之间差异的度量方法。原创 2024-04-10 15:19:07 · 1545 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(21-F散度(F divergence))
F散度是用于衡量两个概率分布差异的一系列度量方法的总称。原创 2024-04-08 10:57:15 · 1248 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(20-海氏距离(Hellinger distance))
海氏距离(Hellinger Distance)是一种衡量两个概率分布差异的度量方法。原创 2024-04-08 10:42:05 · 1469 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(19-JS散度(Jensen-Shannon divergence))
Jensen-Shannon散度(JS散度)是衡量两个概率分布差异的一种方法,它基于Kullback-Leibler散度(KL散度)但是对称且总是有界的。原创 2024-04-08 10:25:48 · 3408 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(18-交叉熵(cross-entropy))
交叉熵是衡量两个概率分布之间差异的度量,在机器学习中,特别是在分类问题和神经网络的训练中广泛使用。原创 2024-04-08 10:13:34 · 954 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(17-相对熵(relative entropy))
相对熵,也称为Kullback-Leibler (KL) 散度,是用于衡量两个概率分布之间差异的度量。原创 2024-04-08 09:54:27 · 1140 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(16-卡方检验(chi-square test))
卡方检验(Chi-square test)通常用于统计分析中比较观测值与期望值之间的差异,评估两个类别变量之间是否存在显著的关联性。原创 2024-04-08 00:56:05 · 1522 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(15-堪培拉距离(Canberra Distance))
堪培拉距离是用于度量两个向量间差异的数值度量,特别适用于非负数值数据。原创 2024-04-08 00:39:23 · 1756 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(14-莱文斯坦距离(Levenshtein Distance))
莱文斯坦距离(Levenshtein Distance),又称编辑距离,是两个字符串之间,由一个转换成另一个所需的最少单字符编辑操作的数量。原创 2024-04-05 23:33:48 · 1704 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(13-豪斯多夫距离(Hausdorff Distance))
豪斯多夫距离(Hausdorff Distance)是度量两个点集之间相似度的指标,广泛用于计算机视觉、图像分析和几何形状比较中。原创 2024-04-05 23:23:28 · 2601 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(12-布雷柯蒂斯距离(Bray Curtis Distance))
布雷柯蒂斯距离(Bray-Curtis Distance)是一种用于生态学和生物多样性研究中度量两个样本组成差异的指标,尤其适用于度量物种组成的相似性或差异性。原创 2024-04-05 23:10:34 · 3336 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(11-落合系数(Ochiai’s coefficient))
落合系数(Ochiai's Coefficient),在某些文献中也称为余弦相似度(Cosine Similarity)的一种变体,是一种用于度量两个集合相似度的指标,尤其是在生物学和生态学中用于评估物种多样性。原创 2024-04-05 22:59:45 · 920 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(10-杰卡德相似系数(Jaccard Similarity Coefficient))
杰卡德相似系数(Jaccard Similarity Coefficient)是用来衡量两个集合之间相似度的指标。原创 2024-04-05 22:49:31 · 2050 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(9-汉明距离(Hamming Distance))
汉明距离(Hamming Distance)是两个字符串之间的差异度量,定义为在相同的位置上有不同字符的数量。原创 2024-04-05 22:37:39 · 1341 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(8-皮尔逊相关系数(Pearson Correlation))
皮尔逊相关系数(Pearson Correlation Coefficient)是度量两个变量之间线性相关程度的一个指标。原创 2024-04-05 22:27:43 · 1811 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(7-余弦距离(Cosine Distance))
余弦距离(Cosine Distance)衡量的是两个向量在方向上的差异性,而不是在大小上的差异。原创 2024-04-05 22:16:38 · 2256 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(6-马氏距离(Mahalanobis Distance))
马氏距离(Mahalanobis Distance)是由印度统计学家普拉萨德·查拉·马哈拉诺比斯(Prasanta Chandra Mahalanobis)提出的,用于度量一个点到一个分布或数据集中心的距离。原创 2024-04-05 22:05:47 · 2072 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(5-标准化欧氏距离(Standardized Euclidean Distance))
标准化欧氏距离(Standardized Euclidean Distance)是欧氏距离的一个变种,用于在各个维度的尺度不一致时度量两个点之间的距离。原创 2024-04-05 21:57:07 · 1362 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(4-闵可夫斯基距离(Minkowski Distance))
闵可夫斯基距离(Minkowski Distance)是一个广泛用于度量两个点在n维空间中的距离的方法,它是欧式距离、曼哈顿距离和切比雪夫距离等多种距离度量的一般化形式。原创 2024-04-05 21:45:42 · 1574 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(1-欧氏距离(Euclidean Distance))
欧氏距离(Euclidean Distance)是最直观、最常用的距离度量方法之一,用于计算两点在欧氏空间中的实际距离。本博客重点介绍这个距离度量方法。原创 2024-04-02 23:01:16 · 1508 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(2-曼哈顿距离(Manhattan Distance))
曼哈顿距离(Manhattan Distance),也被称为L1距离或城市街区距离,是度量两点在标准坐标系上的绝对轴距离总和。本博客重点介绍这个距离度量方法。原创 2024-04-03 17:05:06 · 1775 阅读 · 0 评论 -
【DL经典回顾】距离度量大汇总(3-切比雪夫距离(Chebyshev Distance))
切比雪夫距离(Chebyshev Distance),在数学中也被称为L∞距离,是向量空间中的一种度量,它是两个点之间各坐标数值差的最大值。本博客重点介绍这个距离度量方法。原创 2024-04-03 17:15:21 · 1487 阅读 · 0 评论