OpenFoam打卡第一天——多孔介质模型

一、多孔介质模型分类

1. 分类:各向同性多孔介质、各向异性多孔介质。

2. 区别:体现在渗透率是标量还是张量。

二、多孔介质中流体流速的表示方法

多孔介质中流体实际流动速度与表观速度的关系可表示为:

其中τ 为迂曲度。

三、多孔介质中不同流态下的控制方程

1. 雷诺数小于1时,满足Darcy定律,控制方程为:

2. 雷诺数大于1时,满足Forschheimer-Darcy 定律,表示为:

四、多孔介质内的多相流

1.特点:存在“饱和度”概念。

第i相的饱和度为:

     

饱和度为变量,当无源相时,饱和度具有传输方程:

Usi表示第i 项的表观速度。

多相流需要考虑重力的影响,因此:

多孔介质内流体流动受到重力、界面张力等作用力,定义毛管力为

 

 则有:

一个动量守恒方程相加等到的关系式-式(1),一个传输方程-式(2)。共求解两个未知量:Sb和Pa。

求解方法:隐形压力显性饱和度方法IMPES,IMplicit Pressure Explicit Saturation)[式(1)可以使用隐形离散来求解压力,式(2)采用显性离散来更新饱和度。]

五、Darcy-Brinkman-Stokes 方程、固相连续介质模型

常规的多孔介质方法,是在NS 方程中添加一个多孔介质源项来实现。另外一种方法是使用拓展的Darcy-Brinkman-Stokes(DBS)方法来实现。在DBS 方法中,需要附加孔隙率ϵ 的概念,若全部为流体,ϵf = 1。拓展Darcy-Brinkman-Stokes(DBS)方法的控制方程可以写为:

相对于通过在NS 方程中添加源项的方法(其可以被当做一种固定分区孔隙率的方法),DBS 方法可适用性更广。例如其同时可以用于一些孔隙率可变的工况(如溶解与析出)。例如,若考虑溶解行为,也即流体的包含某些反应物,会对多孔介质进行化学侵蚀,在这种情况下有质量守恒方程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值