【零基础学习机器学习】k-近邻算法

本文深入探讨了k-近邻算法的原理与应用,通过电影类型预测等实例讲解其工作方式,分析了算法的优缺点,并提供了详细的代码实现过程,包括数据预处理、特征工程及模型评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

k-近邻算法

什么是k-近邻算法

举例:

k-近邻算法API

实战

分析

代码演练

k-近邻算法优缺点


k-近邻算法

什么是k-近邻算法

属于分类算法,特征是:目标值是离散的。

举例:

电影类型是目标值,推断某个电影的电影类型是什么?可以根据此电影与哪个电影类型距离最近,则是什么类型的电影。

k-近邻算法API

实战

https://www.kaggle.com/c/facebook-v-predicting-check-ins/data?select=train.csv.zip

分析

代码演练

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np


def knncls():
    """
    K-近邻预测用户签到位置
    :return: None
    """
    # TODO 读取数据
    data = pd.read_csv("train.csv")
    # print(data.head(10))

    # TODO 处理数据
    # 1、缩小数据量,为了迅速查询数据
    data = data.query("x>1.0 & x<1.25 & y>2.5 & y<2.75")
    # print(data.head(10))
    # 把日期格式转换成字典格式
    time_value = pd.to_datetime(data['time'], unit='s')
    # print(time_value)
    # print(type(time_value))  # Series
    time_value = pd.DatetimeIndex(time_value)
    # print(time_value)
    # print(type(time_value))  # DatetimeIndex
    # 2、构造一些时间特征
    data['day'] = time_value.day   # 这种形式的增加列,是把time_value的day复制一份,而loc方法是直接拿来用。
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday
    # 3、把时间戳特征删除
    data = data.drop(['time'], axis=1)   # Pandas中axis=1表示列
    # print(data)
    # 4、将签到位置少于n个用户的删除
    place_count = data.groupby('place_id').count()    # 分组之后,索引为分组字段,并且列没有分组字段
    tf = place_count[place_count.row_id > 3].reset_index()  # 重设索引,并且列增加索引字段
    data = data[data['place_id'].isin(tf.place_id)]
    # 把row_id列删除,此列无意义
    data = data.drop(['row_id'], axis=1)
    print(data)
    # 5、取出数据当中的特征值和目标值
    y = data['place_id']
    x = data.drop(['place_id'], axis=1)
    # 6、进行数据的分割,训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)  # 训练目标值,测试目标值,训练特征值,测试特征值


    # TODO 特征工程(标准化)
    std = StandardScaler()
    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)


    # TODO 进行算法流程
    knn = KNeighborsClassifier(n_neighbors=5)
    # fit  predict,score
    knn.fit(x_train, y_train)

    # TODO 得出预测结果
    y_predict = knn.predict(x_test)
    print("y预测的目标签到位置为:", y_predict)

    # TODO 得出准确率
    print("预测的准确率:", knn.score(x_test, y_test))


    return None

if __name__ == '__main__':
    knncls()

k-近邻算法优缺点

k值取很小,容易受异常点影响

k值取很大,容易受目标值的数量(类别)波动

性能:很慢

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值