目录
k-近邻算法
什么是k-近邻算法
属于分类算法,特征是:目标值是离散的。
举例:
电影类型是目标值,推断某个电影的电影类型是什么?可以根据此电影与哪个电影类型距离最近,则是什么类型的电影。
k-近邻算法API
实战
分析
代码演练
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np
def knncls():
"""
K-近邻预测用户签到位置
:return: None
"""
# TODO 读取数据
data = pd.read_csv("train.csv")
# print(data.head(10))
# TODO 处理数据
# 1、缩小数据量,为了迅速查询数据
data = data.query("x>1.0 & x<1.25 & y>2.5 & y<2.75")
# print(data.head(10))
# 把日期格式转换成字典格式
time_value = pd.to_datetime(data['time'], unit='s')
# print(time_value)
# print(type(time_value)) # Series
time_value = pd.DatetimeIndex(time_value)
# print(time_value)
# print(type(time_value)) # DatetimeIndex
# 2、构造一些时间特征
data['day'] = time_value.day # 这种形式的增加列,是把time_value的day复制一份,而loc方法是直接拿来用。
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
# 3、把时间戳特征删除
data = data.drop(['time'], axis=1) # Pandas中axis=1表示列
# print(data)
# 4、将签到位置少于n个用户的删除
place_count = data.groupby('place_id').count() # 分组之后,索引为分组字段,并且列没有分组字段
tf = place_count[place_count.row_id > 3].reset_index() # 重设索引,并且列增加索引字段
data = data[data['place_id'].isin(tf.place_id)]
# 把row_id列删除,此列无意义
data = data.drop(['row_id'], axis=1)
print(data)
# 5、取出数据当中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'], axis=1)
# 6、进行数据的分割,训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) # 训练目标值,测试目标值,训练特征值,测试特征值
# TODO 特征工程(标准化)
std = StandardScaler()
# 对测试集和训练集的特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# TODO 进行算法流程
knn = KNeighborsClassifier(n_neighbors=5)
# fit predict,score
knn.fit(x_train, y_train)
# TODO 得出预测结果
y_predict = knn.predict(x_test)
print("y预测的目标签到位置为:", y_predict)
# TODO 得出准确率
print("预测的准确率:", knn.score(x_test, y_test))
return None
if __name__ == '__main__':
knncls()
k-近邻算法优缺点
k值取很小,容易受异常点影响
k值取很大,容易受目标值的数量(类别)波动
性能:很慢