【论文精读】Superpixel Sampling Networks
Abstract
超像素为图像数据提供了一种高效的低/中级表示方法,大大减少了后续视觉任务所需的图像基元数量。现有的超像素算法是不可微的,这使得它们很难集成到端到端可训练的深层神经网络中。我们开发了一个新的可微分超像素采样模型,利用深度网络学习超像素分割。结果表明,该超像素采样网络(SSN)是端到端可训练的,它允许学习具有灵活损失函数的任务特定超像素,运行速度快。大量的实验分析表明,SSN不仅在传统的分割基准上优于现有的超像素算法,而且可以学习其他任务的超像素。此外,SSN可以很容易地集成到下游深度网络中,从而提高性能。
1和2部分懒得翻译
3 复习SLIC
- Pixel-Superpixel association:将每个像素与五维空间中最近的超级像素中心相关联,即判断每个像素p属于哪个新的超像素中心
D D D表示计算距离: D ( a , b ) = ∣ ∣ a − b ∣ ∣ 2 D(a,b)=||a-b||^{2} D(a,b)=∣∣a−b∣∣2;注意由于在等式1中计算所有像素和超级像素之间的距离D是耗时的,因此该计算通常被限制在每个超像素中心周围的固定邻域内。
H p t H_{p}^{t} Hpt大小为n*m,表示第t次迭代时,原图第 p p p个像素是否属于第 i i i个超像素
I p I_{p} Ip表示原图第 p p p个像素
S i t − 1 S_{i}^{t-1} Sit−1表示第 t − 1 t-1 t−1次迭代时,第 i i i个超像素中心 - Superpixel center update:计算每个超像素内的平均像素特征(XY+Lab)以获得新的超像素中心 S t S^{t} St。
S i t S_{i}^{t} Sit表示第t次迭代时,第 i i i个超像素中心
I p I_{p} Ip表示原图第p个像素
Z i t Z_{i}^{t} Zit超像素 i i i的像素个数
p ∣ H p t p|H_{p}^{t} p∣Hpt表示第t次迭代时,属于超像素 i i i的像素 p p p - 重复1、2步,直到收敛或进行固定次数的迭代。
4 Superpixel Sampling Networks(SSN)
SSN由两部分组成:一个生成像素特征的深度网络,然后将其传递给可微SLIC。
4.1 可微SLIC算法
为什么SLIC不可微?
答:问题出在Pixel-Superpixel association的计算(公式1),涉及不可微的最近邻运算。
解决方案:修改Pixel-Superpixel association从硬距离 H ∈ { 0 , 1 , . . . , m − 1 } n ∗ 1 H \in \{0,1,...,m-1\}^{n*1} H∈{ 0,1,...,m−1}n∗1变成软距离 Q ∈ R n ∗ m Q \in R^{n*m} Q∈